Hydrogen for Automobiles

The key issues to an efficient H energy infrastructure
Why Hydrogen Storage?

What are the problems?

• Mediocre volumetric energy density
• Do we have a hydrogen mine?
• Gaseous under most circumstances
Typical H Storage Means

- High pressure
- Cryogenic
- Chemical Hydrides
- Metal Hydrides
- Physical Sorption
Basic H Storage Requirements

- H mass percentage (~6% wt at least)
- Volumetric density (~0.15 kg/liter at least)
- Low cost
- Ease of recharge or regeneration
- Fast release, fast recharge
- Environmentally sound
High Pressure H Storage

- 3000, 5000, 7000 psi, maybe up to 10000
- Gravimetric density up to 3%-wt H
- Volumetric density ~ 0.06 kg/liter
- Cost high for bottles > 7000 psi
- Environmentally sound
- But how about safety? it’s like a bomb!
- Relative ease of refueling though taking time
- Composite construction with metal liner
64.9 kg composite usage in the 1st hybrid vessel vs. 76.0 kg in the baseline tank (FW alone)

- The end-user H₂ storage system weight efficiency = 1.67 kWh/kg vs. 1.50 kWh/kg in the system with the baseline tank
- The end-user H₂ storage system cost efficiency:
 - $11/lb CF Baseline $23.45 Fully Integrated $21.91 Fully Separate $21.75
 - $6/lb CF Baseline $18.74 Fully Integrated $17.79 Fully Separate $17.63
Approach: Advanced Fiber Placement- Boeing

- **Advanced Fiber Placement**: A CNC process that adds multiple strips of composite material on demand.
 - Maximum weight efficiency - places material where needed
 - Fiber steering allows greater design flexibility
 - Process is scalable to hydrogen storage tanks
 - Optimize plies on the dome sections with minimal limitation on fiber angle
 - Reinforce dome without adding weight to cylinder
Strength

- Tank preparation and validation test

Representative smallest polar opening that the AFP process can currently make

The localized reinforcement protected the dome regions very well

- Static Burst Result: 23420 PSI > 22804 PSI, EN standard (New European Standard superseding EIHP)
- 64.9 kg composite usage in the 1st hybrid vessel vs. 76 kg in the baseline tank (FW alone)

11.1 kg (14.6%) Savings!
Cryogenic H Storage

-252.87°C!

- Very energy consuming to cool
- Energy consuming to maintain
- Gravimetric density up to 8~9%
- Volumetric density ~ 0.08 kg/liter
- Cost high
- Environmentally sound and safe
- Relative ease of refueling
- Vacuum Dewar
Relevance: High density cryogenic hydrogen enables compact, lightweight, and cost effective storage

- **Cost effective:** Cryogenic vessels use 2-4x less carbon fiber, reducing costs sharply at higher capacity

- **Compact:** 235 L system holds 151 L fuel (10.3-10.7 kg H₂)
Relevance: Cryogenic pressure vessels can exceed 2015 H₂ storage targets and approach ultimate
Approach: reduce/eliminate H₂ venting losses by researching vacuum stability, insulation, and para-ortho conversion

- Determine para-ortho effect on pressurization and venting losses
- Directly measure para-ortho populations
- Determine vessel heat transfer mechanism (radiation vs. conduction)
- Evaluate vacuum stability by measuring pressure vessel outgassing
- Test ultra thin insulation for improved vessel volume performance
- Improve vessel design based on experimental results
Hydrogen has two nuclear spin states: para-H\(_2\) (stable at 20 K) and ortho-H\(_2\)

- para-H\(_2\) stable at 20 K
- para-H\(_2\) converts to ortho-H\(_2\) when heated
- Normal H\(_2\) (25% para, 75% ortho) is stable at 300 K
Para-ortho conversion absorbs energy & increases dormancy (equivalent to a second evaporation)

\[\Delta U = 700 \text{ kJ/kg} \]

\[\Delta U = 452 \text{ kJ/kg} \]
Chemical Hydrides

- Examples: NH3, N2H4, B2H6, NaBH4...
- Gravimetric density up to 20%-wt (LiBH4)
- Volumetric density up to 0.2 kg/liter
- Many are safe and sound, but not always
- Cost high except NH3 and hydrocarbons
- Regeneration has been problematic
- Utilization is less straightforward than H2.
Chemical Hydrides: Examples

- Hydrocarbons: CH4, C2H6… (complicated reforming → H2, dirty byproducts)
- NH3 (Ammonia) N2H4 (hydrazine) (toxic and … it stinks)
- B2H6 (diborane) (highly toxic)
- Borohydrides (LiBH4, NaBH4…) (relatively safe)
- Alanates (NaAlH4…) (highly reactive)
Chemical Hydrides: Borohydrides

- LiBH4, very high H content, but not soluble
- NaBH4, 12%-wt H dry
- NaBH4, can be made to 30% H2O solution
- NaBH4, 6%-wt H in 35% H2O stabilized with ammonium hydroxide
- Safe, low toxicity
- Still a challenge in regeneration
2009 Progress & Accomplishments

Status at 2009 AMR Review

Material capacity must exceed system targets

Observed H₂ Capacity, weight %

metal hydrides

Mg(BH₄)₂(NH₃)₂
Ca(BH₄)₂
Mg(BH₄)₂
LiBH₄/Ca
MgH₂
LiH₂/MgH₂
Mg-Li-B-N-H
PCN-12
C aerogel
carbide-derived C
B/C
MOF-74
bridged cat./MRI MOF-8
MD C-foam
bridged cat./AX21
Ti-MOF-16
M-doped CA
PANI
NaBH₄
M-B-N-H
LiBH₄/MgH₂
LiBH₄/CA
Li₃AlH₆/Mg(NH₂)₂
Ca(BH₄)₂
MgH₂
LiH₂/MgH₂
M-B-N-H

sorbents

IRMOF-177
PCN-12
C aerogel
carbide-derived C
B/C
MOF-74
bridged cat./IRMOF-8
MD C-foam
bridged cat./AX21
Ti-MOF-16
M-doped CA
PANI
NaBH₄
M-B-N-H
LiBH₄/MgH₂
LiBH₄/CA
Li₃AlH₆/Mg(NH₂)₂
Ca(BH₄)₂
MgH₂
LiH₂/MgH₂
M-B-N-H

2015

H₂ sorption temperature (°C)

Temperature for observed H₂ release (°C)

NPHE 470 H Sys. & Fuel Cells
Observed H₂ Capacity, weight %

- Mg(BH₄)(AlH₄)
- solid AB (NH₃BH₃)
- MD C-foam
- CsC₂₄
- Ti-MOF-16
- Na₂Zr(BH₄)₆
- PANI
- AB ionic liq.
- Bridged cat/AX21
- Mg(BH₄)₂(NH₃)₂
- BC8
- sorbents
- LiBH₄/CA
- MPK/PI-6
- PCN-6
- IRMOF-177
- AC (AX-21)
- PCN-12
- C aerogel
- carbide-derived C
- B/C
- MOF-74
- AB/IL (20% bminCl)
- Li-AB
- AB/Cat.
- AB/LiNH₂
- AB/AT/PS soln
- KAB
- LiAB
- AB/AT/PS soln
- DADB
- solid AB (NH₃BH₃)

Metal hydrides:
- Mg(BH₄)₂(NH₃)₂
- Mg(BH₄)₂
- MgH₂
- Mg(Li-B-N-H)
- Mg-Li-B-H
- LiBH₄/MgH₂
- LiBH₄/CA
- LiBH₄/Mg₂NiH₆
- Ca(BH₄)₂
- LiBH₄/Mg(NH₃)₂
- Mg₂NiH₆

Chemical hydrides:
- AB/LiNH₂
- LiBH₄/MgH₂
- M-B-N-H
- LiMgN
- Li₃AlH₆/Mg(NH₂)₂
- 1,6 naphthyridine
- LiBH₄/Mg₂NiH₆
- Ca(BH₄)₂
- MgH₂
- Mg(Li-B-N-H)

Ultimate
- LiMn(BH₄)₃
- NaMn(BH₄)₄
- NaAlH₄
- NaBH₄
- PANI

Material capacity must exceed system targets

H₂ sorption temperature (°C) vs. Temperature for observed H₂ release (°C)

2010 Progress & Accomplishments
Metal Hydrides

Simple metal hydrides

- Examples: NiH, PdH, LaNi$_5$H$_6$, MgH$_2$
- Metallic bond, H share mobile electrons with the metal atom
- Hydrogen mobility is generally high
- Gravimetric density from 1% ~ 8%
- Metal hydrides with lower H-content tend to have better reversibility
Simple Metal Hydrides: Classification

- AB_5 - LaNi$_5$H$_6$
- AB_2 - ZnMn$_2$H$_3$
- AB - TiFeH$_2$
- A_2B - Mg$_2$NiH$_4$
- Solid solution type - V$_{0.8}$Ti$_{0.2}$
- MgH$_2$ class (alkaline earth metal hydride)
Metal Hydrides: Isotherm

The isotherm tells us the working temperature and pressure of the hydride and how much H it can store.
Metal Hydrides: LaNi$_5$H$_6$

- Most widely utilized MH today
- Gravimetric density $\sim 1.3\%$-wt H
- Volumetric density ~ 0.1 kg/liter
- Cost high due to nickel, lanthanum (rare earth)
- Relative ease of refueling (near ambient pressure)
- It’s the most representative AB$_5$ alloy
- Can be utilized in electrochemical cells (batteries and fuel cells) directly
The chemical elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>H</td>
<td>1</td>
<td>1.0079</td>
</tr>
<tr>
<td>Helium</td>
<td>He</td>
<td>2</td>
<td>4.0026</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>3</td>
<td>6.941</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Be</td>
<td>4</td>
<td>9.0122</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>11</td>
<td>22.989</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>12</td>
<td>24.305</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Al</td>
<td>13</td>
<td>26.982</td>
</tr>
<tr>
<td>Silicon</td>
<td>Si</td>
<td>14</td>
<td>28.086</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P</td>
<td>15</td>
<td>30.973</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>16</td>
<td>32.06</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>17</td>
<td>35.453</td>
</tr>
<tr>
<td>Argon</td>
<td>Ar</td>
<td>18</td>
<td>39.948</td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>19</td>
<td>39.098</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>20</td>
<td>40.08</td>
</tr>
<tr>
<td>Scandium</td>
<td>Sc</td>
<td>21</td>
<td>44.96</td>
</tr>
<tr>
<td>Titanium</td>
<td>Ti</td>
<td>22</td>
<td>47.87</td>
</tr>
<tr>
<td>Vanadium</td>
<td>V</td>
<td>23</td>
<td>50.942</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr</td>
<td>24</td>
<td>51.996</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn</td>
<td>25</td>
<td>54.938</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>26</td>
<td>55.845</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
<td>27</td>
<td>58.933</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
<td>28</td>
<td>58.693</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
<td>29</td>
<td>63.546</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
<td>30</td>
<td>65.38</td>
</tr>
<tr>
<td>Gallium</td>
<td>Ga</td>
<td>31</td>
<td>69.723</td>
</tr>
<tr>
<td>Germanium</td>
<td>Ge</td>
<td>32</td>
<td>72.61</td>
</tr>
<tr>
<td>Arsenic</td>
<td>As</td>
<td>33</td>
<td>74.922</td>
</tr>
<tr>
<td>Selenium</td>
<td>Se</td>
<td>34</td>
<td>78.96</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br</td>
<td>35</td>
<td>79.904</td>
</tr>
<tr>
<td>Krypton</td>
<td>Kr</td>
<td>36</td>
<td>83.80</td>
</tr>
<tr>
<td>Rubidium</td>
<td>Rb</td>
<td>37</td>
<td>85.47</td>
</tr>
<tr>
<td>Strontium</td>
<td>Sr</td>
<td>38</td>
<td>87.62</td>
</tr>
<tr>
<td>Yttrium</td>
<td>Y</td>
<td>39</td>
<td>88.91</td>
</tr>
<tr>
<td>Zirconium</td>
<td>Zr</td>
<td>40</td>
<td>91.22</td>
</tr>
<tr>
<td>Niobium</td>
<td>Nb</td>
<td>41</td>
<td>92.91</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Ta</td>
<td>42</td>
<td>180.948</td>
</tr>
<tr>
<td>Tungsten</td>
<td>W</td>
<td>43</td>
<td>183.84</td>
</tr>
<tr>
<td>Rhenium</td>
<td>Re</td>
<td>44</td>
<td>192.22</td>
</tr>
<tr>
<td>Osmium</td>
<td>Os</td>
<td>45</td>
<td>190.23</td>
</tr>
<tr>
<td>Iridium</td>
<td>Ir</td>
<td>46</td>
<td>192.22</td>
</tr>
<tr>
<td>Platinum</td>
<td>Pt</td>
<td>47</td>
<td>195.08</td>
</tr>
<tr>
<td>Gold</td>
<td>Au</td>
<td>48</td>
<td>196.97</td>
</tr>
<tr>
<td>Mercury</td>
<td>Hg</td>
<td>49</td>
<td>200.59</td>
</tr>
<tr>
<td>Thallium</td>
<td>Tl</td>
<td>50</td>
<td>204.38</td>
</tr>
<tr>
<td>Lead</td>
<td>Pb</td>
<td>51</td>
<td>207.20</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Bi</td>
<td>52</td>
<td>208.98</td>
</tr>
<tr>
<td>Polonium</td>
<td>Po</td>
<td>53</td>
<td>209.00</td>
</tr>
<tr>
<td>Astatine</td>
<td>At</td>
<td>54</td>
<td>210.00</td>
</tr>
<tr>
<td>Radon</td>
<td>Rn</td>
<td>54</td>
<td>222.01</td>
</tr>
</tbody>
</table>

Lanthanide series

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum</td>
<td>La</td>
<td>57</td>
<td>138.911</td>
</tr>
<tr>
<td>Cerium</td>
<td>Ce</td>
<td>58</td>
<td>140.12</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>Pr</td>
<td>59</td>
<td>140.91</td>
</tr>
<tr>
<td>Neodymium</td>
<td>Nd</td>
<td>60</td>
<td>144.24</td>
</tr>
<tr>
<td>Promethium</td>
<td>Pm</td>
<td>61</td>
<td>147.26</td>
</tr>
<tr>
<td>Samarium</td>
<td>Sm</td>
<td>62</td>
<td>150.36</td>
</tr>
<tr>
<td>Europium</td>
<td>Eu</td>
<td>63</td>
<td>151.96</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>Gd</td>
<td>64</td>
<td>157.25</td>
</tr>
<tr>
<td>Terbium</td>
<td>Tb</td>
<td>65</td>
<td>158.93</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>Dy</td>
<td>66</td>
<td>162.50</td>
</tr>
<tr>
<td>Holmium</td>
<td>Ho</td>
<td>67</td>
<td>164.93</td>
</tr>
<tr>
<td>Enderbium</td>
<td>Er</td>
<td>68</td>
<td>167.26</td>
</tr>
<tr>
<td>Thulium</td>
<td>Tm</td>
<td>69</td>
<td>168.93</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>Yb</td>
<td>70</td>
<td>173.04</td>
</tr>
</tbody>
</table>

Actinide series

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinium</td>
<td>Ac</td>
<td>89</td>
<td>227.025</td>
</tr>
<tr>
<td>Thorium</td>
<td>Th</td>
<td>90</td>
<td>232.04</td>
</tr>
<tr>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.04</td>
</tr>
<tr>
<td>Uranium</td>
<td>U</td>
<td>92</td>
<td>238.03</td>
</tr>
<tr>
<td>Neptunium</td>
<td>Np</td>
<td>93</td>
<td>237</td>
</tr>
<tr>
<td>Plutonium</td>
<td>Pu</td>
<td>94</td>
<td>244</td>
</tr>
<tr>
<td>Americium</td>
<td>Am</td>
<td>95</td>
<td>243</td>
</tr>
<tr>
<td>Curium</td>
<td>Cm</td>
<td>96</td>
<td>247</td>
</tr>
<tr>
<td>Berkelium</td>
<td>Bk</td>
<td>97</td>
<td>247</td>
</tr>
<tr>
<td>Californium</td>
<td>Cf</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Einsteinium</td>
<td>Es</td>
<td>99</td>
<td>252</td>
</tr>
<tr>
<td>Fermium</td>
<td>Fm</td>
<td>100</td>
<td>257</td>
</tr>
<tr>
<td>Mendelevium</td>
<td>Md</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Nobelium</td>
<td>No</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

Alkaline metals

- Lithium (Li)
- Sodium (Na)
- Potassium (K)
- Rubidium (Rb)
- Caesium (Cs)
- francium (Fr)

Alkaline Earth

- Calcium (Ca)
- Strontium (Sr)
- Barium (Ba)
- Lanthanum (La)
- Cerium (Ce)
- Praseodymium (Pr)
- Neodymium (Nd)
- Promethium (Pm)
- Samarium (Sm)
- Europium (Eu)
- Gadolinium (Gd)
- Terbium (Tb)

Rare Earth

- Lanthanum (La)
- Cerium (Ce)
- Praseodymium (Pr)
- Neodymium (Nd)
- Promethium (Pm)
- Samarium (Sm)
- Europium (Eu)
- Gadolinium (Gd)
- Terbium (Tb)
- Dysprosium (Dy)
- Holmium (Ho)
- Erbium (Er)
- Thulium (Tm)
- Ytterbium (Yb)
LaNi$_5$H$_6$: Structure
Metal Hydrides: MgH$_2$

- Gravimetric density ~ 8%-wt H
- Volumetric density >> 0.1 kg/liter
- Cost is low, very affordable
- Abundant element
- Clean
- Medium temperature absorption and desorption ~ 300 degrees C
- It's the most representative alkaline earth metal hydride
- Not ideal for mobile H storage but ideal for stationary type applications
MgH$_2$: Structure
MgH$_2$: Isotherm

Graph Description:
- The graph shows the dependence of hydrogen pressure ratio p_H/p_0 on hydrogen concentration w_H.
- Data points represent Mg (2% Ni) with different absolute temperatures:
 - Abs.: 653 K
 - Abs.: 623 K
 - Abs.: 593 K
 - Abs.: 573 K
 - Abs.: 547 K
- The pressure p_0 is 0.1 MPa.

Axes:
- **Y-axis:** Hydrogen pressure ratio p_H/p_0.
- **X-axis:** Hydrogen concentration w_H in %.

NPTE 470 H Sys. & Fuel Cells
MgH$_2$: Kinetics

- Absorption and release is slow.
- ~ a few hours for a typical Ab/De-sorption cycle.
- Fast enough for stationary storage of renewable energy nevertheless.
- Can be expedited with innovative heating.
- For example inductive heating.
MgH$_2$: Fast release with induction Heating

- **Hydride Storage**
- **Fuel Cell**
- **Pressure Control**
- **Induction Coil**
- **Power Source ~ 40 kHz**
- **Electrically and Thermally Insulating Container**
- **Hydrogen In & Out**

NPREG 470 H Sys. & Fuel Cells

MgH₂: Fast release with induction heating

Fuel cell performance with and without induction heating
MgH₂: Fast release with induction heating

Fast fuel cell ramping with induction heating
Complex metal hydrides

The hydrogen bonding is more covalent or localized

• Examples: Ca(BH$_4$)$_2$, Mg(BH$_4$)$_2$, LiNH$_2$, LiAlH$_4$

• New development

• Many issues exist, like regeneration, volatiles, safeties
Final Year Downselection Path

Materials examined in final year of the MHCoE

11 More Downselects (Removing from Study)

- CaB_{12}H_{12}/CaH_2 (not reversible)
- Li_2B_{12}H_{12}/6MgH_2 (too high T_{des})
- Ti(BH_4)_3 (not reversible)
- Li_3AlH_6/2LiBH_4 (too high T_{des})
- Li(NH_3)_xB_12H_{12} (NH_3 release)
- NaBP_2H_8 (not reversible)

- 4LiBH_4/Mg_2NiH_4 (low wt. %)
- Mg(B_3H_8)_2 (too unstable)
- Li_2B_{12}H_{12}/2CaH_2 (too high T_{des})
- Mg(NH_3)_xB_10H_{10} (NH_3 release)
- Mg(NH_3)_6B_12H_{12} (NH_3 release)
Physical/Chemical Sorption

• Basically utilize the relatively weak forces: Van Der Waals force, hydrogen bonding…
• Sometimes the sorption could also have a chemical nature.
• Examples: activated carbon, zeolite, MOF (metal organic framework), COF (covalent organic framework), nanotubes…
MOF

- **One of best known MOF 177:**
 \[\text{Zn}_4\text{O(BTB)}_2, \text{ where } \text{BTB}^3- = 1,3,5\text{-benzenetribenzoate} \]

 Theoretical gravimetric density
 - 7.1 wt% at 77 K, 40 bar
 - 11.4 wt% at 77 K, 78 bar

(not including dewar and pressure vessel)
MOF 177

Bridged MOF-177

Pt/AC - MOF-177

MOF-177

P2 AUGERDEG (W T%) vs Pressure (MPa)

NPRE 470 H Sys. & Fuel Cells
Physical/Chemical Sorption

Some remarks

• MOF still not matching the AB$_5$ metal hydride in gravimetric density
• Generally poor volumetric density (puffy material)
• Cycling and cycle life?
• Good with cryogenic means
New energy cars

- Electric (hybrid) cars (80Wh/kg)
- Natural gas cars (>800Wh/kg)
- Fuel cell cars with H (stored in various forms)
 (compressed H > 500Wh/kg)
- Others...

The problem?
1. Energy density
2. Cost
Battery cars

Nissan Leaf has a 24-kWh EPA range of 73 miles

(CNN) -- President Barack Obama's goal of putting 1 million electric cars on U.S. roads by 2015 could run into a huge roadblock -- the American consumer.
Battery cars

Are they really clean or green?

A bit of inconvenient truth?

Coal fired Power station \rightarrow Electric grids \rightarrow charger \rightarrow battery \rightarrow Wheel

Battery cars have an overall efficiency only 30.2%!!

Compared to the gasoline engine cars of \sim30%

And what is cleaner? Coal vs Oil

NPRE 470 H Sys. & Fuel Cells
Battery cars

Some remarks

• Unless there is a major breakthrough in batteries, say doubling the current energy density, battery cars will be a niche.

• Put in perspective, battery chemistry improves from the 1859 Plante lead acid cell (40Whr/kg) to today's lithium ion (80Whr/kg). It doubled in 150 years!
Natural gas cars

The rationale

- NG is 1/3 the price of gasoline equivalent
- It at least triples the range of a battery for less than ½ of the added weight compared to a Li-ion battery car
- For 2 thousand dollars you can modify your car to burn NG, with a range of 70+ miles, bettering that of Chevy Volt!
Natural gas cars

- Most cars can be converted to burn NG + gasoline
- The NG is good enough to daily commute
Natural gas cars

• Then you can charge it overnight at your home
• $2000 conversion vs plug-in hybrids (PHEV) of $12000 battery
• 1/3 of gasoline operation cost, on par with PHEV or cheaper
• More NG reserve than oil. And NG is going up with shale NG and methane hydrates
• NG twice clean as gasoline, four times as coal
Natural gas cars

- The technology is mature
- Only problem existing is political