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Energy gain calculations in Penning fusion systems
using a bounce-averaged Fokker–Planck model
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In spherical Penning fusion devices, a spherical cloud of electrons, confined in a Penning-like trap,
creates the ion-confining electrostatic well. Fusion energy gains for these systems have been
calculated in optimistic conditions~i.e., spherically uniform electrostatic well, no collisional
ion-electron interactions, single ion species! using a bounce-averaged Fokker–Planck~BAFP!
model. Results show that steady-state distributions in which the Maxwellian ion population is
dominant correspond to lowest ion recirculation powers~and hence highest fusion energy gains!. It
is also shown that realistic parabolic-like wells result in better energy gains than square wells,
particularly at large well depths (.100 kV). Operating regimes with fusion power to ion input
power ratios~Q-value! .100 have been identified. The effect of electron losses on theQ-value has
been addressed heuristically using a semianalytic model, indicating that largeQ-values are still
possible provided that electron particle losses are kept small and well depths are large. ©2000
American Institute of Physics.@S1070-664X~00!00711-4#
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I. INTRODUCTION

The spherical inertial-electrostatic confinement~IEC! fu-
sion concept takes advantage of the potential well gener
by an inner spherical cathode~physical or virtual!, biased
negatively to several kV with respect to a concentric ou
grounded boundary, to focus ions inward and to form a de
central core where fusion may occur. The simplest IEC
vice uses a physical grid to create the electrostatic well~Fig.
1!. However, efficient operation of gridded IEC devices m
be limited by grid overheating and erosion problems. To
lieve the problem of grid erosion feared in high pow
scale-up units, Bussard1 and Krall2 proposed the use of
quasispherical magnetic field to replace the grid, thus cr
ing a virtual cathode by confining electrons~Polywell™!.
Although grid losses are eliminated, electron power los
through the magnetic field cusps have been estimated t
deleterious.3 In order to improve the electron confineme
properties, as well as the symmetry of the electron cloud
innovative approach, based on electron confinement b
Penning-like trap to generate the virtual cathode, is be
undertaken4 ~Penning Fusion Experiment with Ions, PFX-I!.
The good electron confinement properties of PFX-I ha
been demonstrated theoretically5 and experimentally,6–8 and,
recently, ion trapping in the electron well at moderate el
tron energies (,1 kV) has been observed experimentally.9

Previous theoretical analyses3,10 of the performance of
IEC systems have concluded that these devices are unab
reach fusion breakeven due to the very large recircula
powers required to overcome the thermalizing effect of io
ion collisions and sustain the non-Maxwellian ion profile

a!Electronic mail: chacon@lanl.gov
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velocity space. However, these studies lack a self-consis
collisional treatment of the ion distribution function in velo
ity space, crucial to adequately estimate the fusion rate
the recirculating power.

The present research aims to identify efficient regimes
operation of Penning IEC devices. A bounce-averag
Fokker–Planck~BAFP! model ~coded as indicated in Ref
11! has been employed for this purpose. In BAFP, only
single ion species is considered, collisional ion-electron
teractions are neglected~although space charge interactio
between both species are included via the Poisson equat!,
and electrons are assumed to form a uniform, spheric
symmetric cloud.

The presentation is organized as follows. Section II d
scribes the power balance issues of the IEC concept in de
Section III reviews the PFX-I confinement approach. T
theoretical model upon which BAFP rests is reviewed in S
IV. A semianalytic model has been constructed in Sec. V
provide for an independent confirmation of BAFP’s nume
cal energy gain results, which are given in Sec. VI. So
final remarks are given in Sec. VII.

II. IEC POWER BALANCE ISSUES

The IEC concept, although potentially very attractive f
reactor applications, faces several critical physics feasib
issues that may hamper its efficient operation. The differ
power loss mechanisms in virtual-cathode IEC devices
clude ion-related losses via thermalization10 and
upscattering,3 as well as electron-related losses1,3 via radia-
tion emission~bremsstrahlung and synchrotron radiation! or
electron outflow~cusp losses, outflow from grid region!.
These issues are reviewed in the following sections.
7 © 2000 American Institute of Physics
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A. Ion thermalization and upscattering

Collisional degradation of the beam-like ion distributio
function is a crucial issue in the assessment of the phys
feasibility of IEC devices, because it may preclude adequ
ion concentration at the spherical center. Nevins10 addressed
this issue by calculating collisional relaxation rates from
beam-like, monoenergetic ion population, absolutely c
fined in a square potential well. From his analysis, Nev
concluded that the IEC system cannot work beyond the
ion collisional time scale, after which the system will the
malize and lose ion focusing before enough fusion eve
take place. Accordingly, he predicted that theQ-value ~de-
fined as fusion power over ion input power! of IEC devices
operating with a 50% deuterium–tritium~D-T! mixture
would be,0.21 for a 50 kV square well. This conclusio
would rule out the possibility of a fusion reactor, but wou
leave open the development of driven neutron sources. N
however, that a tightly focused monoenergetic ion beam i
fact a pessimistic scenario, because different co-moving
species~such as D and T! with the same energy result in
finite speed difference, thus fostering ion-ion collisions a
the degradation of the ion distribution function. It would b
more realistic to consider that, in a square well, friction b
tween species would homogenize the speed within the
beam after some time, making the speed difference infinit
mal. This line of argument was pursued by Barneset al.,12

who foundQ;1.3 for the same system.

FIG. 1. Schematic of gridded IEC device~University of Illinois design!.
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Ion upscattering losses are caused by ions picking
sufficient kinetic energy via Coulomb collisions to surmou
the well and be lost from the system. According to Ref.
the ion upscattering time is about a thousandth of the fus
time, and thus it may represent a potential power sink.

B. Electron-related losses

Synchrotron radiation losses in IEC concepts that
volve magnetic fields~Polywell™, Penning trap, and gridde
devices with magnetically protected grids! have been
estimated1,3 to be negligible. On the other hand, bremsstra
lung radiation losses may represent an important power s
These are minimized by utilizing low-Z fuels ~D-D, D-T!,
and by maintaining a low electron average energy^Ee& in the
system and a large ion average energy^Ei& ~which in the
IEC concept can be tailored via the well depth!. Although
this is generally not possible when both ions and electr
are in local thermodynamic equilibrium~LTE!, it might be
possible if the ion and electron populations are decoup
and non-Maxwellian~as is the case in the IEC high-densi
core1!.

In Polywell™, electron cusp losses have been estima3

to be prohibitive for a fusion reactor~although other
authors1,2 claim that they can be kept at a reasonable le
for efficient operation!. Penning traps, on the contrary, hav
experimentally shown6–8 good electron confinement, thu
virtually eliminating electron outflow power losses. In add
tion, Penning traps offer a simple system for analysis~be-
cause they present spherical symmetry!, pending experimen-
tal confirmation of their ion focusing properties. Th
research focuses on this concept, which is discussed in
ther detail in the next section.

III. THE PENNING FUSION DEVICE

A. Principle of confinement

In the Penning Fusion device~PFX-I!,4,8 radial electron
confinement is provided by a strong axial magnetic fie
(>0.5 T), which keeps electrons gyrating around the ax
field lines. Axial electron confinement is provided by a
electrostatic well of depthW0 generated by two negativel
biased end cathodes, coaxial with the magnetic field, an
grounded central anode, coaxial with the other two~Fig. 2!.
The central anode is onion-shaped, and is designed to ind
a mirror-like perturbation in the axial magnetic field. Th
mirror-like magnetic field provides both radial~cyclotron or-
bits! and axial ~mirror effect! electron confinement within
the conductor, except at the polar regions~divertors!, where
the electrons can leak out along the axis~although they are
still confined by the axial magnetic field and the end ca
odes!. The magnetic field is shaped so that energetic e
trons cannot reach the anode wall, thus avoiding elect
losses.

A high degree of sphericity of the confined electro
cloud is crucial for ion focusing. This in turn requires a
equate design of the anode shape and the strength o
magnetic field, and the adequate steady-state elec
distribution8 to form a quasiuniform spherical electron clou
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within the onion-shaped anode. The unneutralized sp
charge determines the maximum system size, as exce
electric field at the conductor’s wall would result in surfa
flash-over and electrical breakdown. Practical considerat
suggest that the fusion cell radiusa be ,1022 m, with
electron densities ofne;1018m23, and maximum electron
space charge potential,300 kV ~the actual potential in
the system is smaller due to space charge neutralizatio
ions!.

Ions are electrostatically confined in PFX-I by the ele
tron’s space charge. Ions are in practical terms unmag
tized, because magnetic forces are smaller than electeos
forces by the electron to ion mass ratio.8 To maintain the ion
confinement, the ion inventory must be only a fraction of t
electron inventory to preserve the negative space charg
the system. Hence, the Penning trap must remain a
Debye-length machine.

It is of interest to calculate typical fusion power densiti
for the operation parameters specified above. For an ave
ion density of^ni&'1018m23 confined by a 100 kV electro
static well ~which would require an electron cloud densi
ne.223^ni& to form! in a 1022 m radius cell, and assumin
a factor of 5 increase in the power density due to den
peaking~see Sec. VI B!, we find that the fusion power den
sity pf'3 kW/m3 for a 50% D-T mixture. Increasing th
fusion power density further requires increasing the elect
density ne and decreasing the fusion cell radiusa, while
maintaining the well depth'100 kV ~to maximize the fusion
reactivity!. For a fixed well depth of 100 kV, the electrostat
Poisson equation yieldsne}a22, and sincene}^ni&, we find
pf'3(0.01/a)4 kW/m3, and the total fusion power per ce
Pf' 1.25•1024/a(m) W ~note that, for a fixed well depth
Pf increases as the cell radiusa decreases!. Thus, if the
fusion cell radius is reduced toa'4•1023 m, the fusion
power density increases topf'0.12 MW/m3 and the total

FIG. 2. Cross section of the experimental layout of the PFX-I experim
The emitter~electron source!, onion-shaped anode and reflector form
axial electrostatic well for electron axial confinement~radial confinement is
provided by the axial magnetic field!. The reflector is biased slightly mor
negative than the emitter to avoid electron losses to the reflector.
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fusion power per cell isPf'0.03 W. Admittedly, due to the
small volume per cell, a large number of Penning fusion ce
would be required for a decent-sized fusion reactor~about
3•107 cells would be required for a 1 MW reactor!, and the
question remains about the engineering challenges of su
system~refer to Refs. 13 and 14 for proposed fusion reac
concepts based on Penning fusion cells!.

Ions may be introduced in the system in two ways:
injection or by electron impact ionization~EII! of a neutral
gas. In the latter case, the system would rely on EII of a v
low density, low pressure fusionable neutral gas to gene
an ion cloud, which would be confined by the electron spa
charge. The disadvantage of this is that there is little con
over the ion source shape in energy space, essentia
steady-state operation. However, EII is a valid scheme
pulsed operation, as has been recently proposed14,15 in the
periodically oscillating plasma sphere~POPS! concept.

Ion injection, however, allows controlling the shape
the ion source in energy space, and is the one considere
the steady-state analysis performed in this work. Ions can
injected in the system through a lateral injection hole on
anode wall~Fig. 3!. In addition to the magnetic insulation o
the anode provided by the magnetic field, the ion extract
grid should be negatively biased with respect to the an
wall, to prevent electron leakage through the ion injecti
port @which would present a large power sink, because e
trons have the largest kinetic energy (;W0) within the an-
ode# and also prevent ion leakage through the electron div
tors ~which would also present a large power sink, beca
ions would accelerate to the whole electron well depthW0

before being collected!. The effectiveness of the ion extrac
tion grid bias in preventing ion and electron losses depe
substantially on the actual trap design, and is uncertain at
point. It will be assumed in what follows that no partic
losses occur via this mechanism.

t.FIG. 3. Detail of the anode and the ion injection port in PFX-I~not to scale!.
Ion and electron divertors are indicated, as well as theE0 andEmax equipo-
tential lines that define the ion confinement region. TheE0 contour line
determines the region of absolute ion confinement.
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B. Time scales in PFX-I

Four different time scales pertain to ions in this syste

~1! The ion bounce timetb : time that an ion takes to com
plete a closed orbit in the spherical well. It can be es
mated bytb; 4a/vb , wherea is the radius of the pseu
dospherical ion well~Fig. 3! within the anode, andvb

5A2E0 /m, with E0 the ion well depth~potential differ-
ence between the bottom of the well and the ion inj
tion grid, which is the last closed equipotential line; s
Fig. 3!, and m the ion mass. In a typical system,a
;1022 m, andE0;100 kV, and hencetb;1028 s.

~2! The ion replacement timet i : time that an ion injected
with total energy~kinetic plus potential! equal to the
energy of the potential well boundaryEmax ~which is
chosen as the equipotential line that corresponds to
X-point in the electron divertor; see Fig. 3! takes to get
out of the system in the absence of collision even
Since the ion total energy is equal to the well depth,
ion will recirculate in the trap until it finds the ion di
vertor ~Fig. 3!, through which the ion will exit. Hence
the ion replacement time is given byt i5tb / f D , where
f D represents the probability that ions find the ion
vertor ~Fig. 3! while recirculating. This probability can
be estimated, assuming the angular motion of ions
ergodic in the well, as the ratio of the injection port ar
to the cell boundary area,f D' paD

2 /4pa2 5(aD/2a)2,
whereaD is the ion divertor radius~Fig. 3!. Typically,
f D;102621024, and hencet i;102421022 s.

~3! The ion-ion collision time t i i : it can be estimated
using16

t i i ;
AmE0

3/2

&p~k0e2!2^ni&L
, ~1!

where ^ni& is the ion average density,E0 is the well
depth in theabsenceof ions, L is the Coulomb loga-
rithm ~assumed equal to 20 throughout this docume!,
k051/4pe0 is the permittivity constant, ande,m are the
ion charge and mass, respectively. For typical para
eters in the Penning fusion cell~^ni&;1018m23 andE0

;100 kV!, t i i ;0.1 s.

~4! The ion-electron collision timet ie : estimated as the re
ciprocal of the collision frequency of a fast electron bea
(;100 keV) impinging on a target Maxwellian ion popu
lation, ne

e/ i .16 In units of the ion-ion collision frequency
n i i 5t i i

21 , there results

ne
e/ i

n i i
;0.1S T

ED HA T

Em
28.9•104m expF2

1836mE

T G J ,

wherem is the ion mass in proton mass units~m;2.5 for
a 50% D-T mixture!, E is electron energy, andT is the
ion temperature~ions are assumed to be Maxwellian!.
Typically, T/E ;0.1, andt ie5@ne

e/ i #21;102100 s.

Thus, for typical operating conditions, the time scale
erarchy in PFX-I is

tb;1028 s; t i;102421022 s; t ii;0.1 s; t ie;102100 s.
:

-

-

e

.
e

is

-

-

IV. THE BAFP MODEL

In principle, to model the system accurately, the gene
form of the Boltzmann transport equation would have to
solved for all the species in the system, namely, multiple
species and electrons. However, such a problem is extrem
difficult to solve, due to the disparity of time scales prese
and the number of nonlinear equations to be solved simu
neously.

Fortunately, the problem can be substantially simplifi
on the grounds of the time scale analysis performed in
previous section. Thus,t ie@t i i suggests that the ion an
electron physics are decoupled in the ion-ion collision tim
scale. Accordingly, ion-electron collisional interactions c
be neglected, and the problem can be modeled by cons
ing the Fokker–Planck transport equation of the ion spec
alone. The problem will be simplified further by treating
50% D-T mixture as a single ion species of massm5(mD

1mT)/2.
Spatial spherical symmetry is assumed, thus neglec

boundary effects of injection ports. The ion transport gove
ing equations can then be expressed as11

] f

]t
1v r

] f

]r
2

e

m

dF

dr

] f

]v r
5L~ f !, ~2!

1

r 2

d

dr S r 2
dF

dr D5
e

e0
Fne2E dvf ~r ,v,t !G , ~3!

where f (r ,v r ,vp) is the ion distribution function in phas
space,F(r ) is the electrostatic potential within the trap,ne is
the electron density~which is taken here as uniform!, and
L( f ) is the Fokker–Planck collision operator, which in th
Rosenbluth form17 reads

L~ f !52
4p~k0e2!2L

m2

3
]

]v
• F f

]H~ f !

]v
2

1

2

]

]v
•S ]2G~ f !

]v]v
f D G . ~4!

The coefficients inL( f ) are expressed in terms of th
Rosenbluth potentialsH( f ) and G( f ), defined as¹v

2H
528p f and¹v

2G5H, respectively.17

Since tb!t i i , and interesting physics occur in thet i i

time scale,tb should be removed from the theoretical fo
mulation because it is a source of numerical stiffness. Thi
done by averaging the Fokker–Planck transport equa
along one closed particle orbit~bounce average!. As a result,
the bounce-averaged Fokker–Planck transport equa
reads11

]g

]t
~E8,L,t !5 R

E8,L
dtbL~ f !1S~E8,L !2n i~E8!g~E8,L,t !,

~5!

where g(E8,L,t)5tb(E8,L,F)F(E8,L,t), with tb(E8,L,
F) the bounce time~which is strongly dependent on th
potential profileF!, and F(E8,L,t) the ion distribution in
Vlasov space, which is a function of the angular momentu
L, and the effective radial ion energy atr 5a, E85E
2 L2/2ma2 ~whereE is the total ion energy!. These are all
constants of motion in the ion bounce time scale.
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In Eq. ~5!, S(E8,L) is the ion source, andn i(E8) is the
ion loss frequency. Ion sources and sinks can be natur
characterized in terms of the effective ion radial energyE8,11

because ions enter and exit the system at the outer cell ra
~ion sources and sinks are imposed as boundary conditio
r 5a in the full theoretical formulation!. There are two pos-
sible mechanisms for ions to be lost from the fusion c
either they escape through the ion divertor~with center-point
potential energyE0!, or they escape the well boundary~of
potentialEmax see Fig. 3! and are lost in a single bounce. A
ions with radial energies belowE0 are absolutely confined in
the trap in the absence of collision events,E0 is taken as the
reference for the ion potential well. According to these d
ferent ion loss paths, three different confinement regions
be identified according to the value ofE8:

~1! Ion confinement region: E8<E0 . Ions are absolutely
confined in this region, and hencen i(E8)50.

~2! Fast ion loss region: Emax,E8,Edom, whereEdom is the
numerical domain limit. The ion loss frequency is cha
acterized by the ion bounce time,tb , and hence
n i(E8)5tb

21 .
~3! Slow ion loss region: E0,E8,Emax. In this region,

n i(E8) is characterized by the ion replacement time,t i ,
and its form is intimately related to the potential profi
in the ion divertor. For a simple vacuum model of th
potential profile, the ion loss frequency forE8
P(E0 ,Emax) can be expressed as11

ni~E8!5
1

ti

E82E0

Emax2E0
. ~6!

The ion sourceS(E8,L) in Vlasov space has to be located
the ion loss region, as an ion injected in the system will ha
a minimum energy~relative to the bottom of the well! of E
5E0 . A Gaussian profile is selected for the ion source in
ion loss region, centered at (Es ,Ls), and with deviationssEs

andsLs ,

S~E8,L !

5H SmaxexpS 2
~E82Es!

2

2sEs
2 2

~L2Ls!
2

2sLs
2 D , E8.E0

0, E8,E0

.

~7!

Here,Es is the ion injection energy, which satisfiesE0,Es

,Emax. The first inequality stems from the constraint ind
cated above; the second inequality is imposed for efficien
since ions withE.Emax will be lost in one bounce. Also
from efficiency considerations, 2sEs!Emax2E0, so that the
majority of the ion source distribution is effectively con
tained in the slow ion loss region. The rest of the sou
parametersSmax,Ls,sLs are arbitrary; in computations herein
we takesLs5sEs5ss , andLs50.

A. Properties of the steady-state solution

A steady state occurs when]g/]t 50. According to Eq.
~5!, the steady-state solution satisfies
lly

ius
at

:

-
n

-

e

e

y,

e

n i~E8!g~E8,L !5 R
E8,L

dtbL~ f !1S~E8,L !; E8.E0

~8!

R
E8,L

dtbL~ f !50; E8,E0 . ~9!

Condition ~9! is satisfied by the Maxwellian distribution
f MB , sinceL( f MB)50. Hence, the steady-state distributio
function in the trap will be formed by a beam-like comp
nent in the ion loss region (E8.E0), determined by the ion
source and sink strengths, and a Maxwellian componen
the ion confinement region (E8,E0), with temperature and
particle number determined by collisional equilibrium wi
the beam. Two opposite limits of this kind of solution a
depicted in Fig. 4. The realization of either of these lim
depends on the equilibrium between two competing effe
namely, upscattering of the Maxwellian ion population co
fined in the well~which increases as the Maxwellian tem
perature increases, and tends to empty the well!, and down-
scattering of the beam~which tends to fill it!. The relative
importance of these effects is directly related to the stren
of the source and the sink in the problem, which are char
terized here bySmax ~maximum value of the ion source! and
t i ~ion replacement time!, respectively. Thus, weak sinks an
strong sources will result in a large beam population, th
increasing the beam downscattering rate and hence incr
ing the Maxwellian temperature, resulting in the dotted li
profile in Fig. 4. Conversely, weak sources and strong si
will result in a small beam population, thus decreasing
beam downscattering rate and resulting in smaller Maxw
ian temperatures, leading to the solid line profile in Fig. 4

In steady state, particle sources and sinks in the ion
region (E8.E0) have to be in equilibrium. Thus, taking th
particle and energy moments of Eq.~8! in Vlasov space, and
noting that the particle and energy moments in Vlasov sp
of rE8,LdtbL( f ) cancel,11 yields

FIG. 4. Sketch of two opposite limits of the beam-Maxwellian equilibrium
the solid line corresponds to a case in which the Maxwellian populatio
dominant; the dashed line corresponds to a case in which the beam c
bution is dominant.
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E dE8dL2S~E8,L !5E dE8dL2n i~E8!g~E8,L !, ~10!

E dE8dL2ES~E8,L !5E dE8dL2En i~E8!g~E8,L !, ~11!

whereE85E2 (L2/2ma2), anddL252LdL.

B. Calculation of energy gains

Input powers to the system are the electron inject
powerPe, in ~to sustain the well! and the ion injection powe
Pin ~to maintain a steady-state ion distribution!. Output pow-
ers include the ion upscattering power lossPloss, the electron
upscattering power lossPe, loss, the radiative power lossPBr ,
and fusion powerPf . In steady state,Pe, loss1PBr1Ploss

5Pin1Pe, in . Clearly, for efficient operation, it is of interes
that

Pf@Pin1Pe, in5Ploss1Pe, loss1PBr . ~12!

Hence, the proof-of-principle energy gain definition reads

Qpop5
Pf

Ploss1Pe, loss1PBr
. ~13!

An accurate calculation of all these power losses requ
modeling both ions and electrons self-consistently.
present, however, the model treats only ions s
consistently, and only ion losses (Ploss) are calculated. This
research will concentrate on the task of showing which
gimes of operation in spherical, Penning IEC devices sat
Q5 Pf /Ploss@1 ~necessary condition forQpop@1!. How
different Q andQpop are depends on the magnitude of ele
tron power losses. Even though aself-consistenttreatment of
electrons in the system is postponed~awaiting positive con-
clusions from the ion energy gain analysis!, some of the
effects of electron losses on the gain will beheuristically
addressed in Sec. VI C.

The fusion powerPf in the system is calculated as

Pf5
4p

3
K fuelYfuelE d~r 3!dvdv8 f ~r ,v! f ~r ,v8!s f~Erel!v rel ,

~14!

where, for a particular fusion fuel,

~1! Yfuel is the energy yield per fusion event.
~2! K fuel is a constant that takes into account either den

proportions in fuel mixtures, or identical-particle contr
butions in single-isotope fuels.

~3! v rel5uv2v8u is the relative particle velocity.
~4! s f is the fusion cross section. Here, the Bosch and H

fusion cross section fit18 is used. This fit is in terms o
the energy in the center-of-mass reference system,Erel

5mrv rel
2 /2, wheremr is the reduced mass.

This work assumes a 50% D-T fuel mixture; hence,Yfuel

517.6 MeV, K fuel51/4, and mr5mDmT /mD1mT 56/5.
The integral has been successfully benchmarked agains
Maxwellian ^sv& solutions for D-D and D-T fuels~as given
in Ref. 18!, with accuracy in the energy range of intere
~50-200 keV! on the order of a percent.
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The ion loss powerPlossover the top of the well is given
by

Ploss5
8p2

m3 E dE8dL2~E2E0!n i~E8!g~E8,L !.

Alternatively, in the absence of electron losses and onc
steady state is reached in the system,Plosscan be obtained by
calculating thesteady-stateinput powerPin , as follows:

Pin5
8p2

m3 E dE8dL2~E2E0!S~E8,L !,

since, according to Eqs.~10! and ~11!, Pin5Ploss in steady
state. Then, the energy gain reads

Q5

4p

3
K fuelYfuelE d~r 3!dvdv8 f ~r ,v! f ~r ,v8!s f~Erel!v rel

8p2

m3 E dEdL2~E2E0!S~E8,L !

.

At this point, we define the volume-averaged reactiv

^sv&vol and the normalized input powerP̂in as

E d~r 3!dvdv8 f ~r ,v! f ~r ,v8!s f~Erel!v rel5a3^ni&
2^sv&vol ,

8p2

m3 E dEdL2~E2E0!S~E8,L !5
E0a3^ni&

t i i
P̂in .

Using Eq.~1!, theQ-value reads

Q5
23/2K fuelYfuelAmE0^sv&vol

3~k0e2!2L P̂in

. ~15!

From the definition ofP̂in , it is clearly of interest to
inject ions with minimum energy above the well (E→E0) in
order to obtain large gains from the system. However, th
are limits to this, because the ion source distribution w
always present some spread@embodied in the deviationssEs

andsLs in Eq. ~7!#. In this work, it is assumed that the io
injection kinetic energy over the top of the well is 4%–14
of the ion well depth.

C. Limitations of the BAFP model

This model assumes perfect spherical symmetry in
system, and includes ion-ion Coulomb interactions and s
consistent space charge effects. No electron collisional in
mation is included, and only a single ion species is cons
ered. This theoretical framework has been specifica
tailored to address the ion physics self-consistently in
ion-ion collision time scale, to explore the fusion ener
multiplication limits of these devices, and calculate their e
velope of performance. Thus, the model will not be able
address the effects in the energy gain of ion-electron in
actions or asymmetries in the confinement. These issues
though crucial in a proof-of-principle-type scenario, are s
ondary at this stage of the research, and should be consid
only if conclusions from this analysis are positive.
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V. SEMIANALYTIC BENCHMARKING MODEL

This section is devoted to the development of a semia
lytic model that captures the essence of the physics in
problem, to provide independent confirmation of the resu
obtained from the bounce-averaged model.

As discussed in Sec. IV A, the steady-state solution
the bounce-averaged Fokker–Planck equation is formed
beam-like component in the ion loss region (E8.E0), and a
Maxwellian component in the ion confinement region (E8
,E0), with temperature and particle number determined
collisional equilibrium with the beam. The semianalyt
model treats both particle populations as separate ent
that remain in equilibrium. Particles are assumed to be c
fined by a one-dimensional square well in Cartesian ge
etry, of depthE0 . Thus, there is no spherical convergenc
and spatial density profiles of both particle populations~nM

for the Maxwellian group, andnB for the beam! are constant
within the well. It is of interest to calculate these Maxwellia
and beam populations’ densities, as well as the tempera
of the confined Maxwellian populationT, in terms of the
input variables in the system, namely,Smax andt i . The Max-
wellian population loses particles at the top of the well a
rate given by19

]

]t
~nM ! loss;

nM

tM

T

E0
e2E0 /T,

wheretM
215&pe4LnM /AmT3/2. Energy losses by upsca

tering at the top of the well are given in the same refere
by

3

2

]

]t
~TnM ! loss;

nMT

tM
e2E0 /TF11

3

2

T

E0
G .

Particles enter the well by downscattering from the bea
which here is represented by the beam downscattering
(ṅB)d . In equilibrium, particles introduced by the bea
source (ṠB) can either downscatter and be confined in
well @at a rate given by (ṅB)d#, or they eventually get los
through the injection port at a rate given bynB /t i . Hence, in
collisional equilibrium, the beam particle balance equat
reads

ṠB5~ ṅB!d1
nB

t i
.

The beam heats the confined Maxwellian at a rate given
ne

B/MnBEs , where ne
B/M is the energy exchange frequen

between a fast beam and a Maxwellian population of
same species, given by16

ne
B/M'

m

tM

T

Es
FA T

Es
21.1me2m ~Es /T!G ,

where m is the ion mass in proton mass units. Hence,
particle and energy balance equilibrium equations of
Maxwellian population read

ṠB2
nB

t i
5

nM

tM

T

E0
e2E0 /T, ~16!
a-
e
s
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-
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ne
B/MnB5

nM

tM

T

Es
e2E0 /TF11

3

2

T

E0
G . ~17!

Energy transport of downscattered beam particles is con
ered small compared to beam heating, and has been
glected in Eq.~17!. This set of two equations contains thre
unknowns,nB , nM , andT. Closure is provided by imposing
that the total density be equal to the ion average dens
nB1nM5^ni&.

These equations can be simplified further by using
following dimensionless variables: ub5t i /t i i , ŜB

5ṠB (t i i /^ni&) , n̂B5nB /^ni& , n̂M5nM /^ni& , x5 n̂M /n̂B ,
T̂5 T/E0 , Ês5Es /E0 , and read

x2
e21/T̂

AT̂
5~11x!F ~11x!ŜB2

1

ub
G , ~18!

x5me1/T̂
AT̂/Ês21.1me2mÊs /T̂

11 3
2 T̂

. ~19!

In this set of equations, the input variables areŜB , Ês ~which
characterize the source! and ub ~which characterizes the
sink!, and the unknowns arex ~the ratio of Maxwellian to
beam densities!, and T̂ ~the temperature of the Maxwellia
population!.

Equations~18! and ~19! can be combined into a singl
nonlinear equation in terms ofT̂, which is solved numeri-
cally for each set of values$ŜB ,Ês ,ub%. OnceT̂ is found, the
energy gain of this simplified system can be calculated us
Eq. ~15!. Care must be taken in calculating the volum
averaged reactivitŷsv&vol with the semianalytic model, a
nonuniform density profiles occur in the real system. Follo
ing Ref. 10, an effective reactivitŷsv&eff can be defined as

^sv&vol5^sv&effE d~ r̂ 3!n̂i
2~ r̂ !. ~20!

The density integral takes into account the effect of nonu
form density profiles on the reactivity. The actual value
the density integral is very much dependent on the den
profile in the system, which varies widely according to t
operating conditions. To have a feeling of the order of ma
nitude of the value of this density factor, the integral is c
culated using a Gaussian density profilen̂i( r̂ )5n̂0

3exp(2r̂2/s2), which is consistent with a Maxwellian distri
bution in a harmonic well. The width of the Gaussians is
determined in terms ofn̂0 so that n̂i( r̂ ) averages to unity.
The resulting density factor*d( r̂ 3)n̂i

2( r̂ ) is a mildly increas-
ing function of the maximum densityn̂0 , as shown in Fig. 5.
Note that the density factor tends to one asn̂0→1 ~flat den-
sity profile!. A density factor of*d( r̂ 3)n̂i

2( r̂ )'2 is assumed
in subsequent calculations.

The effective reactivitŷsv&eff is calculated in the semi
analytic model as
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^sv&eff'
nB

2^sv&B~Es!1nM
2 ^sv&M~T!

^ni&
2

5
^sv&B~E0Ês!1x2^sv&M~E0T̂!

11x2 .

Here, we neglect the beam-Maxwellian contributi
(nBnM^sv&BM) for simplicity, and because we are interest
in the limit where either the beam dominates or the Maxw
ian dominates~see Sec. VI!. The Maxwellian reactivity
^sv&M is calculated using the fit proposed in Ref. 18; t
reactivity for a monoenergetic beam in a spherical squ
well has been calculated in Ref. 10, and is employed her
estimatê sv&B .

The normalized input powerP̂in in Eq. ~15! is approxi-
mated in the semianalytic model by

P̂in'
4p

3
ŜB~Ês21!, ~21!

where the constant is a geometric factor that takes into
count the spherical volume integral in the real system.

In order to relate the results of the semianalytic mode
the bounce-averaged Fokker–Planck model, it is neces
to expressŜB in terms of Ŝmax ~which is the actual input
parameter in the BAFP code!. Although there is no rigorous
rule available, aheuristicrelation can be obtained by ident
fying the normalizedparticle input rate in BAFP with the
particle source in the semianalytic modelŜB , as follows:

8p2E dÊdL̂2Ŝ~Ê8,L̂ !'0.055Ŝmax;ŜB ,

where the integral has been calculated withŝs50.035. The
best agreement between BAFP and the semianalytic mod
in fact obtained withŜB'0.04Ŝmax.

In this model,Q→` as Ŝmax→0. This limit is actually
meaningless, because no real steady state occurs, and
artifact of only including ion sources/sinks in the energy g
definition ~which tend to zero asŜmax→0! and neglecting
other sinks such as electron losses. The effects of elec

FIG. 5. Variation of the density factor in the reactivity with the maximu
density n̂0 , assuming a Gaussian ion density profilen̂i( r̂ )5n̂0

3exp(2r̂2/s2).
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losses in theQ-value are briefly discussed in Sec. VI
~where it is shown that electrons losses forceQ→0 asŜmax

→0!.

VI. ENERGY GAIN RESULTS

In this section, a parametric study of the energy gain
Penning IEC devices operating with D-T fuel insteady state
is performed to identify the region in the parameter spa
that offers the most efficient operating regimes. The spac
independentinput parameters of the bounce-averaged mo
is $Êmax, Êdom, Ŝmax, Ês , ŝs , g5 ne /^ni& , u5 t i /t i i %,
where a ‘‘̂ ’’ indicates a dimensionless variable. Here, en
gies are normalized to the well depthE0 , velocities are nor-
malized tov05AE0 /m, densities are normalized to the a
erage ion densitŷ ni&, times are normalized tot i i , and
lengths are normalized to the cell radiusa. The parametric
study will focus on the following variables:

~1! Ŝmax, Ês , which characterize the ion source;
~2! u5 t i /t i i , which characterizes the ion sink;
~3! g5 ne /^ni&, which characterizes the well shape, and

directly related to the fusion power density in the syste
~via ^ni&!.

The rest of the input parameters will remain fixed in
simulations, to the following values:Êmax51.2, Êdom52.0,
and ŝs50.035.

Energy gains are calculated with the BAFP code11

which integrates the nonlinear set of equations presente
Sec. IV. In order to compare the numerical energy gain
sults against previous theoretical results10 and the semiana
lytic model developed in Sec. V, the system is analyzed fi
with a square potential well. Modifications of these resu
for more realistic potential wells are presented in Sec. VI
in particular, perfectly parabolic wells~the case when ions do
not appreciably affect the electron space charge! and quasi-
parabolic wells~resulting from partial ion neutralization o
the electron space charge! are discussed in detail. Power de
sity issues and the effect of electron losses on the ene
gain are discussed in Sec. VI C.

A. Square well

Three parameters are relevant in this scenario, nam
$Ŝmax, Ês , u%. Recall thatu is the normalized ion replace
ment time, and hence, largeru-values correspond to weake
sinks, and vice versa. The following values are conside
for this study:

~1! u5$0.1, 0.01, 0.001%, consistently with the time order
ing in Sec. III B;

~2! Ŝmax5$30, 300%, to provide different beam-Maxwellian
equilibria @typically, Ŝmax5300 results in focused, beam
like steady-state solutions, whileŜmax530 results in a
truncated Maxwellian distribution~which ‘‘fills’’ the
well! with a small beam-like contribution11#;

~3! Ês5$1.04, 1.09, 1.14%. These values are in between th
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well depth (Ê051) and the potential at the wall (Êmax

51.2), and correspond to ion injection energies 4%
14% above the well depth.

Results of the energy gain calculations with BAFP are p
sented in Fig. 6. Figure 6~a! depicts the scaling of the
Q-value with the well depthE0 ~in keV!, for the two values

FIG. 6. Scaling of the energy gain calculated with BAFP for a squ

potential well with~a! the well depthE0 , ~b! the beam injection energyÊs

~specialized foru50.01 andE0550 keV!, and ~c! the normalized ion re-

placement timeu ~specialized forÊs51.04, E0550 keV!. Results for the
same parameters obtained with the semianalytic model are also include
comparison.
-

of Ŝmax under consideration, and detailing the results foru

50.01 andÊs51.04. Results from the semianalytic mod
are also included for reference~with ub'u and ŜB

'0.04Ŝmax!. Note that the semianalytic model reproduc
both the trends and magnitude of the results obtained w
BAFP. From these plots, we see that weak ion sour
~which correspond to Maxwellian-dominated solutions! re-
sult in a stronger scaling ofQ with the well depth, and tha
well depths.100 kV are required for largeQ. This counter-
intuitive result can be readily understood by recalling that
Maxwellian component of the solution is almost absolute
confined by the electrostatic well, whereas the beam com
nent is only partially confined~Sec. IV A!. Thus, a small
beam component results in less recirculating power—
hence largerQ-values—for the same average particle e
ergy.

The scaling ofQ with Ês obtained with BAFP forE0

550 keV is shown in Fig. 6~b!; clearly, Q improves asÊs

decreases. Results from the semianalytic model largely a
with BAFP’s; however, their scalings differ slightly asÊs

→1. This is an artifact of the approximation used for t
input power in the semianalytic model@Eq. ~21!#, sinceP̂in

→0 asÊs→1 ~and henceQ→`!, while the input power in
BAFP remains finite asÊs→1 @due to the ion source sprea
in (E,L) space#.

The variation ofQ with u obtained with BAFP is plotted
in Fig. 6~c!, indicating thatQ is quite insensitive to varia-
tions in the sink strength foru.0.01, and it decreases rap
idly for u below that threshold. This behavior is consiste
with a power law of the typeQ;ua, wherea!1 ~theoreti-
cal estimates10,12 of a for monoenergetic beams yielda
51/4!, and indicates that it is crucial for largeQ to design
fusion cells with mild ion sinks~u.0.01 implies, according
to Sec. III B, f D,1025; this requirement is relaxed for rea
istic potential profiles and very large well depths, as in
cated in Sec. VI B!. Although the semianalytic model an
BAFP agree in order of magnitude and trend in the bea
dominated solution (Ŝmax5300), for the Maxwellian-
dominated solution (Ŝmax530) the semianalytic trend grow
faster than BAFP’s~i.e., the exponenta is larger for the
semianalytic model!. This occurs because~1! Maxwellian
solutions are more sensitive to changes in the sink stren
than beam-like solutions, due to the nonlinear dependenc
T̂ on the sink parameter, and~2! for the same variation ofu
~BAFP! and ub ~semianalytic model!, changes in the sink
strength in the semianalytic model are more drastic th
changes in the sink strength in BAFP, particularly near
top of the wellE0 @because the semianalytic model assum
a constant sink strength 1/ub in the slow ion loss region
(E0,E8,Emax), while the sink strength in BAFP follows a
linear profile that increases from zero atE85E0 up to 1/u
@Eq. ~6!#.

1. Comparison with previous theoretical work

Energy gains for spherical IEC systems have been e
mated theoretically in Ref. 10, where a monoenergetic
distribution function~modeled with a Dirac delta! confined
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in a square potential well was employed to calculate co
sional relaxation rates and estimate the ion pumping po
required to sustain such a distribution in steady state.
calculation suggested that

~1! Gains are limited toQ,0.21 for a 50 kV well depth.
~2! Q increases mildly with the well depthE0 .
~3! Q;Ar0, where r05r 0 /a, and r 0 is the radius of a

constant-density central core. In the same referencu
;r0

2, and henceQ;u1/4. Thus, Q increases mildly
with u.

These conclusions cannot be compared directly with the
sults from the bounce-averaged Fokker–Planck model
cause of the impossibility of implementing delta functio
numerically. However, BAFP should reproduce the sa
phenomenology in the case of beam-like steady-state ion
tribution functions. This is in fact the case, because

~1! Q increases mildly withE0 in the beam-like solution
limit @Ŝmax5300 in Fig. 6~a!#.

~2! Q increases very mildly withu @Fig. 6~c!#.

However, calculatedQ-values from BAFP in thebeam-like
caseare about five to ten times larger than those obtaine
Ref. 10~see Table I!. This inconsistency can be traced ba
to the different treatment of the D and T ion species in b
calculations. Thus, while BAFP treats both species as
with average massm5 (mT1mD)/2, Ref. 10 treats both spe
cies separately but assuming they follow thesamemonoen-
ergetic distribution function. This results in a finite veloci
difference between species that boosts collisionality, ren
ing smallerQ-values. The inconsistency in theQ-value dis-
appears when BAFP is compared against theoretical
mates with a similar multispecies treatment,12 as shown in
Table I.

Results so far have been obtained for a very simplifi
well shape~the square well!. Realistic wells with a quasiuni
form electron cloud are parabolic-like, with corrections d
to the ion self space charge. Energy gain results for th
more realistic wells are given next.

B. Self-consistent wells

The term ‘‘self-consistent’’ refers here to the fact th
the potential profile is consistent with Poisson’s equati
with the assumption that electrons retain a uniform den
profile. The well shape in this situation is determined by
ratio of the electron to ion average volumetric densitiesg
5 ne /^ni&. In order to provide adequate ion confineme
electrons have to be in excess; hence,g.1. Here, two limits
are considered:

TABLE I. Comparison of analytical and numerical estimates ofQ-values in
a beam-dominated solution for a 50 kV square well.

Analytical BAFP

With co-moving ions Q,0.21 ~Ref. 10! ¯

Without co-moving ions Q,1.3 ~Ref. 12! Q;1
-
er
e

e-
e-

e
is-

in

h
e

r-

ti-

d

se

,
y
e

,

~1! g@1 ~parabolic!: the perturbation of the ion self spac
charge on the potential well profile is negligible, and t
well remains parabolic. Thus, it is not required to sol
the nonlinear Poisson problem. This limit provides t
deepest wells~thus increasing the fusion reactivity!, but
fusion power densities are low because of small aver
ion densities~the electron density is considered fixe
because it is determined by technological and des
considerations!.

~2! g.1 ~quasiparabolic!: electrons are in excess, but th
ion perturbation on the potential well profile cannot
neglected, and the potential profile has to be recalcula
every time step. The partial neutralization of the electr
space charge reduces the well depth available for io
thus decreasing the fusion reactivity. However, the
sion power density increases because, according to
definitions of Pf , ^sv&vol , and g, Pf}^sv&volne

2/g2,
showing that smallg-values are preferable. Here,g55
is selected~which typically reduces the available we
depth by a half!.

To provide a fair comparison of the energy gains in bo
limits, the effective well depth—after partia
neutralization—is used in the plots. The comparison h

been done forÊs51.04 only, because the evolution of th

Q-value with Ês is well-known @Q; 1/(Ês21)#, and this
case results in best energy gains.

The Q-value phenomenology in self-consistent we
will vary from that observed in the square well case, for t
following reasons:

~1! While in square wells the beam component is solely
sponsible for any density peaking atr 50 ~see Fig. 8
below! due to ion focusing, in parabolic-like wells th
thermal component may also contribute to density pe
ing. This occurs because the density profile of the Ma
wellian component follows the Boltzmann facto

e2eF(r )/kBT'e2 r̂ 2/T̂, which peaks atr 50. Hence, for the
same ion distribution, the density profile will general
be sharper in parabolic wells than in square wells due
the thermal component contribution, and will result
larger density peaks to satisfy the integral conditi
*0

1d( r̂ 3)n̂( r̂ )51.
~2! The parabolic profile results in less average ion kine

energy per bounce, because some is transformed b
into potential energy in each ion oscillation in the trap

These two effects influence the fusion power in oppos
ways. On the one hand, more peaked density profiles
crease the fusion power~via the density factor!. On the other
hand, in the case of the average kinetic energy being be
the Maxwellian D-T fusion reactivity peak~located atT
'60 keV!, smaller average ion kinetic energies decrease
fusion power~via the fusion reactivity!.

The density peaking and the average kinetic energy a
affect the ion input power via the ion-ion collision fre
quency. In general,for a fixed source strength, increasing the
density peaking and/or decreasing the average ion kin
energy per ion bounce results in larger ion-ion collision f
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quencies, and hence in larger input power requireme
However, the input power will only be affected significant
when the Maxwellian component is dominant, because
then that power losses due to ion-ion collisions are relev
~via the Pastukhov factor19!.

The overall influence of these different effects on t
Q-value is not obviousa priori, because it depends on th
relative change of the fusion power and the ion input pow
Figure 7 depicts the scaling of theQ-value with the effective
well depth for both weak sources@Ŝmax530, Fig. 7~a!# and
strong sources@Ŝmax5300, Fig. 7~b!#. Scalings for parabolic
and quasiparabolic wells are shown, together with those
the square well~which are included for comparison!. In this
figure, theQ-values in shallow wells (E0;50 keV) are simi-
lar for all well shapes, indicating that, in parabolic-like wel
the input power and kinetic energy effects offset the den
peaking effect. However, as the well depth is increased,
kinetic energy effect becomes unimportant and the den
peaking effect dominates over the input power effect, res
ing in Q increasing faster withE0 in parabolic-like wells
than in square wells. Note in Fig. 7 that weak ion sour

FIG. 7. Comparison of the scaling of the energy gainQ with the effective
well depth for different well shapes~g55,@1, and square well! for ~a!

Ŝmax530, and ~b! Ŝmax5300. These plots have been obtained withÊs

51.04 andu50.01.
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also result in betterQ-values than strong sources fo
parabolic-like wells, due to the smaller recirculation powe
required to maintain the steady-state solution.

Figure 8 shows the density profiles obtained with BAF
in both the quasithermal@Fig. 8~a!# and beam-like@Fig. 8~b!#
limits. All density profiles in this figure satisfy the integra
condition *0

1d( r̂ 3)n̂( r̂ )51, and hence the number of pa
ticles is the same in all cases~note that large density differ
ences at small radii may be offset by small density diff
ences at large radii because the density is weighed b
factor r̂ 2 in the normalization integral!. The ratio of the den-
sity factor for the parabolic well to that for the square well
;8 in the quasithermal case, and;3 in the beam-like case
while the energy gain ratio at large well depths~Fig. 7! is
;5 in the quasithermal case, and;3 in the beam-like case
The energy gain ratio in the quasithermal case is somew
smaller than the corresponding density factor ratio due to
simultaneous increase in the input power. On the other ha
the beam-like energy gain ratio is of the order of the cor
sponding density factor ratio, consistently with the obser
tion that the input power effect is only relevant in quasith
mal solutions.

The competing density and kinetic energy effects ha

FIG. 8. Plot of the density profilesn̂( r̂ ) in square and parabolic wells

resulting from~a! a quasithermal solution~Ŝmax530 andu50.001!, and~b!

a beam-like solution~Ŝmax5300 andu50.1!.
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FIG. 9. Plot of theQ-value as a func-
tion of the well depthE0 for the purely
parabolic well case (g@1), for u

50.001, 0.01, 0.1, and forŜmax530

and Ŝmax5300.
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interesting consequences in the scaling of theQ-value with
the normalized ion replacement time,u. This is shown in Fig.
9. Thus, while theQ-value increases slightly withu for shal-
low electrostatic wells, the trend is reversed for large el
trostatic wells (E0.150 kV), for which theQ-value actually
increases asu decreases~i.e., as the sink grows stronger!.
This effect is more noticeable in quasithermal solutio
(Ŝmax530) than in beam-like solutions (Ŝmax5300) because
in the former the density peak is strongly dependent onT̂,
which in turn is nonlinearly dependent onu. Thus, larger
sinks ~smaller u! result in smaller normalized
temperatures—to limit the Maxwellian tail losses—which
turn increases theQ-value in two ways:~1! it results in larger
density peaks@consistently with the Boltzmann facto

n̂( r̂ )}e2F̂/T̂ and the normalization condition#, and ~2! for
extremely large well depths (E0.1502200 kV), the abso-
lute ion temperature may rise above the Maxwellian D
fusion reactivity peak~which is located atT'60 keV!, and
hence smaller temperatures may result in larger fusion r
tivities.

From these results, it is clear that self-consistent w
have better convergence and energy multiplication prope
than square wells, and the correspondingQ-values are less
sensitive to the sink strength, provided that operation at la
well depths~E0.150 kV after neutralization! is possible ex-
perimentally.

However, a direct quote of these energy gain results m
be misleading, because the calculation of theQ-value in this
model includes only ion losses, and neglects electron lo
in the system. The effects of these losses on theQ-value are
heuristically discussed in the next section.

C. Heuristic estimate of the effect of electron losses
in the energy gain

Preliminary conclusions on the influence of electr
power losses in the energy gain of the system can be dr
using the semianalytic model developed in Sec. V~which
applies only to square wells!. Electron energy may be lost b
-

s

c-

ls
es

e

y

es

n

electron upscattering from the electron well,Pe, loss, and ra-
diative losses due to the presence of ions in the system,PBr

~it is assumed that no electrons are lost to the anode or
ion extraction grid!. Electron upscattering losses are es
mated by

Pe, loss; f e

4pa3

3

neDE'

tee
, ~22!

whereDE' is the perpendicular energy carried out by ele
trons @which is gyrating energy due to the presence of
axial magnetic field and is assumed to be of the order of
electron injection energy in the system (; eV)#, tee

5AmeW0
3/2/&p(k0e2)2neLe is the electron collision time

~whereW0;3E0 is the electron well depth13!, and f e is a
nonphysical factor that controls the electron upscatter
losses, and will be used to address the sensitivity of
Q-value to this power loss mechanism.

Radiative losses are estimated using the well-known
pression for Bremsstrahlung losses of a Maxwellian elect
population,

PBr'
4pa3

3
ABr^ni&neAkBTe, ~23!

where Te is the electron temperature,kB is the Boltz-
mann constant, and ABr51.6•10238m3J/AeVs54
•10229m3AJ/s. In this application, electrons are close
monoenergetic with energyW0 . Thus, (3/2)kBTe;W0 is as-
sumed.

The dimensionless forms of Eqs.~22! and ~23! read

P̂e, loss5
4p

3
Ami

me
S E0

W0
D 3/2

DÊ' f eg
25

4p

3
Qef eg

2,

P̂Br5
4p

3
ABr

Ami

&p~k0e2!2L
A2W0

3E0
gE05

4p

3
QBrgE0 .

For a 100 kV well andW0;3E0 , we findQe'1.3•1023 and
QBr'1.2•1024 keV21. Then, the energy gain reads
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FIG. 10. Plot of theQ-value ~including electron losses! as a function of~a! Ŝmax andg with f e51023, ~b! Ŝmax and f e with g55, ~c! Ŝmax and f e with g

5100, and~d! Ŝmax andE0 with g55 and f e51023. These plots have been obtained forE05100 keV @except~d!#, ub50.01, andÊs51.04.
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&p~k0e2!2L@0.04Ŝmax~Ês21!1Qef eg
21QBrgE0#

,

~24!

with ^sv&vol determined from Eq.~20!. This expression of
the Q-value explicitly includes the electron to ion densi
ratio g, and the sensitivity factorf e . Note that the energy
gain is monotonically decreasing with both of these para
eters. The dependence of the energy gain ong for different
source strengthsŜmax is shown in Fig. 10~a! for E0

5100 keV, ub50.01, Ês51.04, and f e51023. Clearly,
smaller values ofg result in best energy gains~althoughg
has to be sufficiently large to maintain the negative sp
charge!, consistently with power density arguments~recall
Pf;1/g2!. Note thatQ→0 asŜmax→0 ~instead of growing
to infinity!. There is in fact an optimal source strength th
while allowing a quasithermal ion distribution, provides su
ficient power density to overcome the electron losses.

The effect of f e on the Q-value is depicted in Figs
10~b!, 10~c!, for several scenarios ofg (g55,100). Figure
10~b! shows the dependence ofQ on f e and Ŝmax, for g
55. While theQ-value is insensitive tof e for large source
strengths, it is quite sensitive for small source strengths~the
case of interest here!. Note that very largeQ-values can be
achieved forg55 if f e→0, which implies achieving excel
lent electron particle confinement~so the only remaining
electron loss is Bremsstrahlung!.

For g5100, however, the situation is quite differe
@Fig. 10~c!#. The sensitivity ofQ to f e increases signifi-
-

e

,

cantly, as might be expected, sincef e in Eq. ~24! is multi-
plied by g2. However, in this regime,Q,1 even whenf e

50, because the fusion power density is too low to overco
Bremsstrahlung losses.

Finally, the scaling of theQ-value with the well depth
and the source strength forg55 andf e51023 is depicted in
Fig. 10~d!. The scaling is best for the optimal sourc
strength. Achieving largeQ-values requires well depth
.100 kV.

VII. CONCLUSIONS

In this paper, a bounce-averaged Fokker-Planck mo
has been employed to obtain steady-state solutions for
ion distribution function—and to calculate associated fus
energy gains~Q-values!—in a variety of operating condi-
tions in terms of source and sink strengths, ion inject
energies, well depths and electrostatic potential shapes.

Prior analyses of theQ-value of IEC devices10 have as-
sumed that ions were confined in asquarepotential well, and
that their distribution was tightly focused and monoen
getic. With these premises, estimatedQ-values were typi-
cally less than 0.2. However, when these restrictive assu
tions are relaxed, it is found that large energy gainsQ
;10) for beam-likesolutions in square wells are possible
Penning IEC devices provided that

~1! The electrostatic well is deep enough (E0.100 kV);
~2! Ion confinement time is long enough (u.0.01);
~3! Ion source strength is moderate (Ŝmax,300);
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~4! Ion injection energy is close to the top of the well (Es

'1.0421.14E0).

In addition, novel, very efficient (Q;50) operating regimes
have been identified in deep square wells for weak
sources (Ŝmax;30) and moderately long ion confineme
times (u;0.01), in which the Maxwellian contribution i
dominant over the beam contribution. These results indic
that efficient use of the electrostatic well is essential
achieve large fusion gains, and demonstrate that the M
wellian ion distribution—which has been neglected in pre
ous analyses—might also be of interest for the inertial e
trostatic confinement concept.

Results also indicate that the square well assumpt
used in previous analytical estimates,3,10 is in fact a pessimis-
tic one. Thus,parabolic wells result in larger density peak
at the center, yieldingQ-values 3 to 5 times larger~for E0

.150 kV! than those obtained with square wells, and
more forgiving with respect to the sink strength.

Preliminary studies of the effects of electron particle a
radiative losses indicate that largeQ-values are still possible
if Penning IEC devices operate with small electron to i
density ratios, at the optimal ion source strength~small
enough to allow a quasithermal solution, but large enoug
provide sufficient fusion power density in the system to ov
come electron power losses!, provided that electron particle
losses are small (0, f e,1) and well depths are large (E0

.100 kV).
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