Research on a Phonon-Driven Solid-State X-Ray Laser

George H. Miley, Andrei Lipson, Y. Yang, J. tillman, H. Hora
Department of Nuclear, Plasma, and Radiological Engineering
University of Illinois
Urbana, IL 61801 USA

Glenn Schmidt
New Mexico Tech-IERA

Robert E. Smith, Jr.
Oakton International Corporation

X-ray Laser: Fusion Trends,
Washington DC 3-10-05
This discharge driven X-ray laser would offer unique features

The technology:

A deuterium discharge-excited phonon-driven Solid-state plasma laser, which

- emits shortwave (1-keV photon) X-ray
- possesses high efficiency (~0.1%, compared with prior “table-top” devices)
- is compact
- high energy output
Background

- Concept initiated by report of x-ray laser by A. Karabut, Lutch, Russia.

- UIUC experiment was designed to verify his results, but use a more flexible experimental unit to allow future extensions and diagnostics.
Karabut’s experimental setup used a cylindrical design. a – TLD detectors and Be filters of various thickness, b – pin-hole camera, c – PEM-Scintillator system. 1 – cathode; 2 – anode; 3 – Be foil screens; 4 – TLD detectors; 5 – cassette to hold the detectors, 6 – absorbing Be foil screens with thicknesses 15µm - 300µm; 7 – X-ray film; 8 – scintillator; 9 – PEM.

We elected to build a somewhat different design to allow more flexible diagnostics/experiments (plus, originally Karabut was to ship us his unit)
Example of xray output reported by Karabut: Near Threshold X-ray emission recorded by a PEM. Incipient laser pulses appear between the input current pulses while strong incoherent emission occurs during the current pulse. The laser pulses rapidly grow in amplitude above threshold. Year 1 studies have focused on reproducing the non-coherent sub-threshold xrays.
Karabut’s Images of x-ray emission using a pinhole camera. The objective of 0.3-mm diameter is narrowed by a 15-μm Be filter in front of the camera. (discharge current – 10 to 150mA, the exposure time – 1000s) Fig. a – the diffusive X-ray emission below threshold, Fig. b – The laser beam near threshold.
Background - Karabut’s deuterium discharge X-ray laser causes damage in plastic target up front
Close-up on the damaged plastic target
Study of this unique new type of laser poses new science and technology challenges

The challenge in technology:

• Verify the lasing operation/phenomenon
• Study the operation parameters
• Scale up the energy/power output
• Adapt for future tactical/strategical application

The challenge in science:

• Diagnose the xray coherence properties
• Understand the lasing mechanism
• Diagnose the plasma (solid/gaseous state)
• Study beam propagation and quality
UIUC Progress

- Designed and set up flexible large volume discharge device for study
- Built, with NMT assistant, unique pulsed power supply that closely duplicates and extends Karabut’s
- Set up film and solid-state detector array
- Carried out initial experiments demonstrating operation and anomalous x-ray emission.
- Obtained additional collaborating x-ray data from Russia via collaboration with A. Lipson’s lab using a GD device.
The large volume UIUC chamber gives room for internal diagnostics. Also the anode cathode separation is easily adjusted. Grounded cathode-chamber arrangement suppresses stray chg. pt. beams. A photo of the discharge is also shown.
Circuit and characteristics of special pulsed power supply constructed for experiments

- 220 V input
- 2 kV output
- 555 timers to control frequency and PWM
- 100 Hz - 1 kHz (300 kHz maximum)
- Sharp rise and cutoff
The 2.2 kVA power supply is shown below. The circuit board controlling the frequency works well from 100 Hz to 1800 Hz and the pulse width modulation provides duty cycles of 5% to 95%.
Initial experiments confirm large x-ray yields during pulsed discharge operation.

- At operating voltages < 2 keV, very small x-ray yields would be expected
 - The detector views the cathode where ion, not electron bombardment dominates.
 - Ion bombardment-induced Bremsstrahlung (x-rays) yields at these energies are virtually negligible.

- These results are essentially in agreement with Karabut’s sub-threshold x-ray measurements, providing confidence that coherence studies can be achieved in Phase II.
X-ray Emission recorded with filtered solid state detector indicates peak emission around $p=610$ mTorr $V=750$V $I=4$A for a Ni cathode. A typical trace is shown. The signal has an optimum amplitude in this pressure range, decreasing with either higher or lower pressure. It also depends on the cathode material.
Issues considered in xray signal identification

- Electronic noise – blocked front of detector to identify rf noise component.
- Light interference – special order thin silvered Mylar filter used to discriminate
- Electron beam – suppression by grounded detector-cathode screen arrangement
- Auxiliary TLD measurement of x-rays consistent with solid state detector.
The measured X-ray yield/deuteron (points) vs. effective discharge power greatly exceeds the yield calculated for ion-induced Bremsstrahlung at the cathode. (Blue curve).
The X-ray dose (in Gy, obtained with TLDs) vs. power at constant pressure follows:

\[I_x = I_0 \exp\left[\frac{\varepsilon}{kT_m}P^*x/P^*_0\right] \]

where \(I_0 \) is the X-ray dose: \(I_0 = 0.98 \) Gy for \(p=6.0 \) mm Hg and \(I_0=0.725 \) Gy for \(p=4.2 \) mm Hg. This behavior again agrees in trend with Karabut's earlier results, providing independent confirmation of a key part of his work.
MeV-Alpha Measurements Performed in Russia (Lipson collaboration) add insight into xray laser mechanism.

- MeV alphas measured from cathode during glow discharge using CR-39 foils
- Similar alpha spectrum obtained from fast ps laser irradiation of target
- Similarity suggests theoretical model of focused energy flow in glow discharge driven X-ray laser is plausible
Charged particle (alpha/ proton) spectrum from Ti cathode in GD.
Measured by CR-39. Note emission of 2 bands of MeV alpha particles (vs. 1.44 kV applied). This suggests the input power is focused internally. To test this theory, companion experiments were done with a high power, ps laser focused on a similar Ti target.
Arrangement of the 1.5 ps $P=2 \times 10^{18}$ W/cm2 laser and TiD$_x$ target used to test the focused energy theory.
The energetic particle yield is proportional to power density applied – thus, as expected, laser yields are orders of magnitude higher than the glow discharge. However, the key point is the energy spectrum shown next.
The alpha spectrum from the glow discharge measurement agrees surprisingly well with the high power PS laser result, supporting the focused energy theory.

Comparative alpha energy spectra from ps laser strike on TiD$_x$ and from GD in D2 with Ti cathode (CR-39 measurement)

- 1.5 ps laser, $P=2\times10^{18}$ W/cm2: TiD$_x$
- GD: Ti/D2, $U=1.5$ kV, $I=250$ mA
Glow Discharge Lasing Theory has been modified to be consistent with alpha emission studies. Key point - dislocation center loading provides effective energy flow focus equivalent to focused laser.

| 1. Formation TiD₄ (n_d = 2x10²³ cm⁻³) over stopping range layer in Ti cathode (at U~ 2.0 keV, Rₛ ~ 15 nm). At I > 100 mA it takes ~ 1us. | 2. Desorption of D⁺ flux from Ti-surface at T=1940K (ti melting point), <Ed> = 0.17 eV, v_d = 4x10⁵ cm/s: Φ_d = 1/3 n_dv_d = 10²⁹ cm⁻² x s⁻¹, moving coherently |
| 3. Exothermic D⁺ desorption from Ti-surface induces shock waves in opposite direction. Shock waves create dislocations in the Rₛ layer, N_d ~ 10⁸⁻¹⁰ cm⁻² | 4. The shock waves produce a high order harmonic generation (similar to powerful IR laser X-ray coherent excitation) and send electrons out of inner shell of Ti-metal host |
Analogy to PS Laser Theory (Cont’d)

<table>
<thead>
<tr>
<th>5. Assuming D+ would escape through the active sites at the Ti-surface (dislocation cores), the power density: (P_{\text{eff}} = \Phi_d x E_d / S_{\text{eff}} \sim 10^{14} - 10^{16} \text{ W/cm}^2) at (S_{\text{eff}} \sim 10^{-6} - 10^{-5}) of (S(\text{Ti})). (S_{\text{eff}} = S(\text{dis}) \times N_d).</th>
<th>6. Energy of coherent X-ray quanta: (h\nu = U_e + 3.2 W_p \sim 1.5 \text{ keV}(U_e - \text{is a LII Ti ionization potential, } W_p - \text{ponderomotive potential}).) At (U_e = 460 \text{ eV}, W_p \sim 300 \text{ eV},) corresponds to (P_{\text{eff}} \sim 10^{15} \text{ W/cm}^2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. 2.0 keV D+ bombardment suppresses X-beam de-phasing effects, creating a strong electric field and penetration of Ti LII shell</td>
<td>8. Expected duration of X-ray pulses from the Ti-cathode: (\tau = R_s / v_d \sim 4 \times 10^{-12} \text{ s})</td>
</tr>
</tbody>
</table>
Conclusion from MeV alpha measurements

- Due to localized loading in dislocation cores, and target ablation, very high focused energy release is possible.
- This is consistent with the proposition that x-ray laser inversion could occur in the target despite the seemingly low input power densities.
- Two features, the localized beamlets implied and short burst character, appear consistent with observations previously noted, but not understood, by Karabut. (for example, note localized beamlet-like damage shown in earlier slide of Karabut's plastic target. His detection method can not measure laser pulse lengths, but implies they are < ps.)
Conclusion - results have provided a sound basis for laser studies

- Discharge chamber designed and built
- Pulsed power unit designed and operational
- Diagnostic techniques developed
- Sub-threshold x-ray measurements confirm anomalous emission similar to Karabut's
 - Strong emission from cathode despite low voltage
 - Higher energy x-rays than expected from ion bombardment.
 - Non-linear yield power behavior
- Theory is consistent with alpha emission (and also with high power ps laser-driven x-ray laser– see appendix C).

X-ray Laser: Fusion Trends,
Washington DC 3-10-05
Thank You

For further information contact

George H. Miley
ghmiley@uiuc.edu
217-333-3772
Fusion Studies Laboratory
103 S. Goodwin Ave. MC-234
100 Nuclear Engineering Lab
Urbana, Illinois 61801 USA
Appendix A. UIUC Hollow Discharge is planned for next step laser.

Hollow cathode discharge plasma tube (C-Device) working in FSL lab.
Comparison of Energy Level and Screening Potentials for GD vs. accelerator bombardment
(screening potential = approx. energy level ion can approach; i.e. higher is better)

Appendix B: Electron Screening (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accelerator Exp.</th>
<th>GD Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target/T, K</td>
<td>Ti/T=186K</td>
<td>Ti/T>1000K</td>
</tr>
<tr>
<td>E_d, keV</td>
<td>10.0-2.5</td>
<td>2.45-0.80</td>
</tr>
<tr>
<td>U_s[eV], (estimated)</td>
<td>65±15</td>
<td>620±140</td>
</tr>
<tr>
<td>Shell</td>
<td>M_I</td>
<td>L_{II}</td>
</tr>
<tr>
<td>E (level), eV</td>
<td>58.3</td>
<td>461</td>
</tr>
</tbody>
</table>
Appendix B: Electron Screening (Cont’d)

- Electron screening effects in deuterated metals
 - b) The Ruhr-Universität Bochum astrophysics team and the LUNA (Laboratory for Underground Nuclear Astrophysics) collaboration, with fruitful and very convincing results. For details, see Appendix B

The LUNA collaboration logo.
Courtesy of LUNA
Appendix B: Electron Screening
(Cont’d) Recent worldwide progress in
low energy screening studies

- Selected results from the Ruhr-Luna team

More to be found at
http://nucleus.ep3.ruhr-uni-bochum.de/astro/electron_screening/electron_screening.htm

The elements studied showing high electron screening for low energy D-D reactions
APPENDIX C: Present work is also related to new results of 1.3 keV X-ray lasing induced by powerful fs IR-laser hitting He-jet target (J. SERES et al., Nature 433, 596 (10 February 2005);
APPENDIX C: In their experiment x-ray emission is broad in energy. The soft X-ray beam is filtered by 100-cm helium (3 millibar), 100-nm Cu and 100-nm Al filters and a 300-nm AP1.3 window. Green line, overall transmittivity of these filters; grey line, calculated spectrum of radiation emitted by individual He atoms exposed to 5-fs pulses with a peak intensity of 1.4×10^{16} W cm$^{-2}$.

(X-ray laser intensity $\sim 10^2$-10^3 - quanta/ s)
APPENDIX C: Relation of Model for lasing in GD pulsed discharge to fs laser-induced x-ray laser.

- At high surface temperature $T=1940$ K, $E_d = 0.17$ eV, $v_d = 4 \times 10^5$ cm/s;
- Deuterium flux toward the surface in the deuteron stopping range layer ($E_d \sim 2$ keV, $R_s \sim 15$ nm): $\Phi_d = 1/3 n_d v_d \sim 10^{29}$ cm$^{-2}$ s$^{-1}$ at $n_d \sim 2 \times 10^{23}$ cm$^{-3}$;
- D-diffusion is a coherent process similar to driving IR powerful laser beam in X-ray lasing induced by short IR pulses. High order harmonic generation.
- Deuteron flux effective Power density at the active sites over the Ti surface: $P_{\text{eff}} \approx 10^{14}$ W/cm2.

X-ray Laser: Fusion Trends,
Washington DC 3-10-05
APPENDIX C: Relation to fs-Laser exp. (Cont’d)

- Feasible energy of X-ray laser quanta would be \(h\nu = U_e + 3.2\ W_p \approx 1.4\ keV \), where \(U_e = 462\ eV \) is the ionization potential of inner shell (TiLII); \(W_p = 250\ eV \) – is the ponderomotive potential induced by interaction between a coherently moving deuterium flux and bombarding deuterons at \(P_{\text{eff}} \approx 10^{14}\ W/cm^2 \).

- \(\text{D}^+ \) penetration into LII Ti- shell provide a strong electric field suppressing induced X-ray beam de-phasing effects.

- Expected duration of X-ray pulses from the Ti-cathode: \(\tau = R_s/v_d \approx 4 \times 10^{-12}\ s \)
APPENDIX C: Relation to fs-Laser exp. (Cont’d)

- As in case of MeV alpha-emission studies, the recent fs-induced xray lasing is consistent with the present theoretical understanding for the GD-driven xray laser under study.