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Presentation Outline

• Fuel Cell Research at the Jet Propulsion Laboratory
– Systems Development
– Fuel Cell Group Members

• JPL’s Role and Responsibilities for the NASA ECP Program
– Task Overview
– Program Schedule

• DMFC MEA Testing Techniques
– Test Stand Setup
– Cell Voltage-Current Characterization
– Anode Polarization
– Methanol Crossover

• DMFC MEA Fabrication Studies
• Methanol-Hydrogen Peroxide Studies
• DMFC System Design
• ECP Program Status 

– Accomplishments
– Program Schedule Detail
– Future Work
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DMFC System Development Progress at JPL
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Fuel Cell Team

• Program Manager
– R. Surampudi (Power Systems Manager)

• Technical Team
– S. R. Narayanan (DMFC Team Leader, Electrochemical Technologies Group Supervisor)
– T. I. Valdez (Principal Investigator)
– J. F.  Whitacre (Advanced Catalyst Development)
– A. Kindler (System Design/ Component Selection)
– S. Firdosy (Laboratory Support)
– D. Suazo (Laboratory Support)
– F. Clara (Lab Materials Processing)
– E. Yen (Materials Support)
– A. Abatahi (Electronics Development)
– M. Young (Mechanical Support)
– P. Shakottai (Thermal and Fluids Modeling)
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JPL Task Overview

• Technical Objectives of Phase-I
– Characterize state-of-art NaBH4/H2O2 fuel cells
– Evaluate new materials supplied by partners for improving 

reactant regeneration in NaBH4/H2O2 regenerative fuel cells
– Test a NaBH4/H2O2 regeneration fuel cell based system 

fabricated by the industry team members
– Support the development of a preliminary system design for kW-

class regenerative NaBH4/H2O2 fuel cell based power source
• Technical Objectives of Phase-II

– Characterize the performance of a kW-class NaBH4/H2O2 
regeneration fuel cell system fabricated by the industry team 
members
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Phase I Project Schedule
1.  NaBH4/H2O2 Test Stand 
Development
2. NaBH4/H2O2 Cell Testing
3.  Design of 10W Regenerative 
NaBH4/H2O2 System
4.  Testing of 10W Regenerative 
NaBH4/H2O2 System
5.  Design kW-Class Regenerative 
System
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DMFC MEA Testing Techniques: Testing Schematic
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DMFC MEA Testing Techniques: Anode Polarization Subtraction

• Test Set-up
– Nitrogen is introduced into the cathode 

compartment of the fuel cell.  The 
cathode of the fuel cell now becomes a 
dynamic hydrogen electrode.

– When the cell is polarized, the resultant 
curve will be Ea vs. current density at 
the chosen operating temperature of the 
cell.  

• Polarization Analysis
– Ecell, at any air flow rate, can be added 

to Ea at the same molarity and 
temperature to get Ec corresponding to 
the flow rate.

Ec = Ecell +Ea

– When Ea and Ec are plotted together as 
a function of current density, the 
kinetics of the reaction can be seen.
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DMFC MEA Testing Techniques: Methanol Crossover

• Measuring and quantifying methanol crossover.
– The cathode exit stream is exhausted into a CO2 analyzer. (Horiba VIA-550)
– An effective current is calculated from the volume % of CO2 detected in the analyzer.
– The current is normalized by the cell active area and reported as an crossover current density.

• Calculation
– Convert CO2 Volume % into a volume flow rate of CO2.
– Use Ideal Gas Law to calculate mole of CO2/sec.

n = PV/RT
– Use Faraday’s Law to calculate out an effective current which can be normalized into a current 

density.
I = n Fne

• Advantages of this method
– Can see the effects of anode methanol consumption on crossover.
– Is a true reflection of the CO2 production in an operating cell.
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DMFC MEA Testing Techniques: Efficiency Calculations

• Electrochemical Efficiency is determined by the cells deviation from its thermal neutral potential as a 
result of polarization. ηElectrochem = Cell Voltage/ 1.24V

• Fuel Efficiency is determined by the ratio of applied current to total current density. ηFuel = CD/ (CD 
+ XCD)

• Cell Efficiency is the product of both Electrochemical Efficiency and Fuel Efficiency. ηCell = 
ηElectrochem * ηFuel
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DMFC MEA Testing Techniques: Isolating The True Cathode potential

• When the effects of methanol crossover on the cathode are taken into account from an 
electrochemical standpoint, the true cathode potential is revealed.

• The total current applied to the cathode becomes: 
Itrue = Iapp + Icr (4).  Now Ec, mix can simply be called Ec.

• Ec should be a constant regardless of methanol molarity.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

Current Density (mA/cm2)

X
-O

ve
r C

ur
re

nt
 D

en
si

ty
 (m

A
/c

m
2 )

20 C

40 C

60 C

1M MeOH

0.5

0.6

0.7

0.8

0.9

10 100 1000

Current Density (mA/cm2)

P
ot

en
tia

l v
s.

 N
H

E 
(V

)

Ec, mix

Ec, t

1M MeOH



Electrochemical Technologies Group

DMFC MEA Testing Techniques: Cathode Performance

• Methanol crossover adversely effects cathode performance
– Water produced from crossover can form a physical barrier to O2 at the catalyst membrane 

interface.  “Electrode Flooding”
– Methanol is immediately oxidized at the cathode surface, thus is in competition with the 

protons for CO2

• The general idea is to operate a fuel cell at the lowest possible airflow (Air 
Stoichiometry).
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DMFC MEA Fabrication Studies: Motivation

• Understanding the effects of electrode design on fuel cell performance at the low airflow rates is the 
motivation for this research.

Air-Breathing “Back-to-Back” Strip Cell (‘00)Ambient Pressure 25 watt Stack (‘96)Low Pressure 25 watt Stack (‘95)
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The Direct Methanol Fuel Cell
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DMFC Advantages
• Safety of handling a liquid fuel versus 

compressed gas fuel tank (i.e. 
Hydrogen)

• Low methanol concentration (<3%) in 
the “working” fuel loop

Direct Methanol Fuel Cell Reaction:

Anode:    CH3OH + H2O → 6H+ + 6e- + CO2

Cathode:  3/2O2+ 6H+ + 6e-→ 3H2O 

Cell:       CH3OH + 3/2O2 → CO2 + 2H2O
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DMFC MEA Fabrication Studies: The Effect of Cathode Structure 
on DMFC Performance

• Hydrophobic particles have a beneficial effect on cell performance at low airflow rates.
• The location of the hydrophobic particles in the gas diffusion backing appears to be beneficial in 

realizing high performance.
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DMFC MEA Fabrication Studies: Electrode Potentials as a Function of 
Applied Current Density

• Hydrophobic particles allow the oxidant easier access to the catalytic surfaces.
• Anode performance varies by application process and is dominated by electrode density or tortuosity
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DMFC MEA Fabrication Studies: Summary of the Cell Performance 
for the Type 1, 2 and 3 MEAs

• Modifying the MEA electrode structure can result in an 80% increase in peak power density. 
• The Type 3 MEA yields the highest performance.

! 60 oC, 0.5M MeOH, 0.1 LPM, 0 PSIG
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DMFC MEA Fabrication Studies: The Benefits of Hydrous RuO2 At 
The Anode Catalyst/ Membrane Interface
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DMFC MEA Fabrication Studies: Conclusions

• The use of hydrophobic particles in the gas diffusion backing is key to 
attaining high cell performance at low airflow. 

• A fuel cell operating point of 0.389 V at 180 mA/cm2 is attainable at the 
system friendly operating conditions of 60 oC, 1.76 x Stoich.

– Cell Efficiency: 29%
– Cell Power Density: 70 mW/cm2

• The addition of hydrous RuO2 to the anode/ membrane interface lowers the 
anode overpotential and allows for improved utilization of the catalyst. 

• Electrically conductive proton conducting additives enhance the utilization of 
the catalyst and thus offer an alternative path to catalyst reduction.
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Methanol-Hydrogen Peroxide Studies: Motivation

•Hydrogen peroxide can be used as 
an alternative oxidant for DMFC in 
any application which can see a 
limited amount of free convection 
air.
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Methanol-Hydrogen Peroxide Fuel Cells

• When hydrogen peroxide is introduced to the 
cathode compartment of a direct methanol fuel 
cell it is decomposed to oxygen at the surface of 
the electrode backing and at the catalyst/ 
electrode-backing interface according to equation 
1.

3H2O2 → 3H2O + 3/2O2 (1)

The fuel cell reactions are as follows:

A:  CH3OH + H2O → 6H+ + 6e- + CO2 (2)

C:  3/2O2+ 6H+ + 6e-→ 3H2O               (3)

Cell: CH3OH + 3H2O2 → CO2 + 5H2O (4)

• Consumption of hydrogen peroxide is also likely 
to occur according to equation 5. 

3H2O2 + 6H+ + 6e-→ 6H2O (5)
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Methanol-Hydrogen Peroxide Studies: Experimental

• MEA Structure Tested
– 6-8 mg/cm2 Pt and Pt-Ru Catalyst Loading (Catalyst Purchased from Johnson 

Matthey)
– Fabricated by direct deposit method
– Pressed with 0% Teflon® content carbon collectors

• Experimental Matrix
– Methanol Concentration, 0.5M
– H2O2 circulation rate, 0.372 +/- 0.040 L/min
– Cell Characterization with H2O2 in concentration ranges of 3-16.5%
– Cell Characterization at 5.5% H2O2 at temperatures: 24, 30, and 34oC
– Anode Polarization at 30oC

• Data Reported
– IV-Performance
– Half Cell Analysis 
– H2O2 Decomposition Analysis



Electrochemical Technologies Group

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 30 60 90

Current Density (mA/cm2)

C
el

l V
ol

ta
ge

 (V
)

23.8C 30.1C 33.9C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 30 60 90

Current Density (mA/cm2)

C
el

l V
ol

ta
ge

 (V
)

29.7C 40C

Methanol-Hydrogen Peroxide Studies: Hydrogen Peroxide/ Air Comparison

DMFC-hydrogen peroxide single cell 
VI-performance is comparable to 
DMFC-air at 30 and 40 oC.
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Methanol-Hydrogen Peroxide Studies: Cathode Evaluation at 30oC
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Methanol-Hydrogen Peroxide Studies: Effect of Oxygen Demand on 
Decomposition Rate
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Methanol-Hydrogen Peroxide Studies: Decomposition Rate vs. Peroxide 
Concentration
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Methanol-Hydrogen Peroxide Studies: Decomposition Rate as A function of 
Temperature
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Methanol-Hydrogen Peroxide Studies: Conclusions

• Hydrogen peroxide can serve as a substitute to oxygen in DMFC reactions.
• Hydrogen peroxide can be used as a liquid oxidant or decomposed on across a 

catalyst bed to enrich the oxygen content of air feed.
• Concentrations of hydrogen peroxide of at least 5.5% must be used for stable 

performance at current densities greater than 16 mA/cm2.
• Controlling Methanol Crossover is very important in H2O2 system because of 

the fixed quantity of oxidant.
• The decomposition rate of hydrogen peroxide is a thermally activated reaction 

with an observed activation energy 7.6 kcal/mol (31 kJ/mol)
• The decomposition rate of hydrogen peroxide appears to be a 2nd order 

reaction.
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DMFC System Design: System Integration
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System Specifications
Electrical:
• Output Voltage: 24 V
• Power: 300 W
• Max Current: 12.5 A
Physical:

Power Source
• Dimensions: 31.5 in x 20.7 in x 11.5 in
• Mass: 55.6 kg (122.6 lb)
• Volume: 123 L (4.3 ft3)
• Figures of Merit: 539.5 Whr/kg, 243 Whr/L

Fuel Cell System
• System Mass: 17.7 kg (39 lb)

Fuel Tank
• Fuel: Methanol(Supplied from internal fuel tank)
• Capacity: 30000 Whr
• Tank Volume: 32 L (1.1 ft3)
• Fuel Mass: 25.2 kg (55.5 lb)

Operational Environment:
• Air Quality:  High dust concentration, 20 times zero visibility (~ 5 

gm/m2 of ACS Coarse 30 microns dust)
• System Startup: Instantaneous when ambient temperature is greater 

than 5 oC (41 oF)
• Wet Storage: 5 to 70 oC (158 oF)
• Air Temperature: -17 to 45 oC (113 oF)
• Attitude Sensitivity: +/- 45o to vertical
• Shock and Vibration: Survive a three-foot drop on concrete.
• Unit must be protected during wash rack cycle.

DMFC System Design: Power Source Specifications
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ECP Program Status: Summary of Accomplishments

• Re-costed program
• Negotiated with UIUC to de-scope JPL deliverables
• Submitted JPL Task Proposal Revision 1 to program office
• Program on contract May 25th 2005
• Re-scheduled program
• Participated in the May 26th telecon headed by Professor Miley of UIUC.
• Participated in the June 16th telecon headed by Professor Miley of UIUC.
• Program scheduled w/JPL scheduler
• FFE in process of being populated
• Modification of DMFC Test Stand for NaBH4/H2O2 fuel cells in progress
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ECP Program Status: Phase I Project Schedule (Detail)
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ECP Program Status: Future Work

• Receive catalyst/MEAs from UIUC and Swift
• Fabricate MEAs
• Initiate fuel cell test on standard DMFC hardware
• Fabricate NaBH4/H2O2 test cell

– Receive active area from UIUC
– Test cell to fabricated out of PEEK

• Characterize MEAs fabricated from UIUC and Swift catalyst
– Voltage-Current Performance
– Characterize Fuel/Oxidant Utilization
– Characterize Fuel/Oxidant Regeneration
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